Photosynthetica 2015, 53(2):259-268 | DOI: 10.1007/s11099-015-0103-8

Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping

W. Z. Gong1,2, C. D. Jiang3, Y. S. Wu1,2, H. H. Chen1,2, W. Y. Liu1,2, W. Y. Yang1,2,*
1 College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, China
2 Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wenjiang, Chengdu, China
3 Institute of Botany, Chinese Academy of Sciences, Beijing, China

Intercropping is a sustainable agricultural practice used worldwide for highly efficient utilization of resources. However, short crops often grow under the shade of the canopy of tall crops in intercropping systems. Plants evolved two main strategies to deal with shade: avoidance and tolerance. Soybean (Glycine max), a legume crop, is often planted in intercropping. But little is known about a strategy that soybean may employ to deal with shade at seedling stage. Therefore, we determined morphological and physiological traits related to shade tolerance and shade avoidance in seedlings of two varieties. Generally, both varieties showed similar shade tolerance traits, such as increased specific leaf area and chlorophyll (Chl) content, and reduced photosynthetic capacity and the Chl a/b ratio. The light-limiting environment eliminated the benefits of shade tolerance traits for the carbon gain, which led to similar real-time photosynthesis and biomass in intercropping. By contrast, two varieties expressed different changes in shade avoidance traits. The variety Guixia 3 exhibited clear preference of shade avoidance that resulted in a high main stem, hypocotyl elongation, and biomass allocation towards the stem. The variety Gongxuan 1 showed those traits less. We suggested that the genetic variation occurs within soybean, thus the shade avoidance related traits might be important for variety selection for intercropping. Hence, the evaluation of performance should focus on shade avoidance in soybean genotypes in future experiments.

Additional key words: biomass partitioning; gas exchange; leaf structure; monocropping; palisade mesophyll; stem elongation

Received: May 27, 2014; Accepted: August 12, 2014; Published: June 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gong, W.Z., Jiang, C.D., Wu, Y.S., Chen, H.H., Liu, W.Y., & Yang, W.Y. (2015). Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica53(2), 259-268. doi: 10.1007/s11099-015-0103-8
Download citation

Supplementary files

Download filephs-201502-0013_S1.pdf

File size: 182.41 kB

Download filephs-201502-0013_S2.pdf

File size: 168.71 kB

References

  1. Anderson J. M.: Photoregulation of the composition, function, and structure of thylakoid membranes. - Annu. Rev. Plant Phys. 37: 93-136, 1986. Go to original source...
  2. Anten N. P., von Wettberg E. J., Pawlowski M. et al.: Interactive effects of spectral shading and mechanical stress on the expression and costs of shade avoidance. - Am. Nat. 173: 241-255, 2009. Go to original source...
  3. Baker N.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Ballaré C. L.: Keeping up with the neighbours: Phytochrome sensing and other signalling mechanisms. - Trends Plant Sci. 4: 97-102, 1999. Go to original source...
  5. Bedoussac L., Justes E.: Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. - Plant Soil 330: 37-54, 2010. Go to original source...
  6. Boardman N. K.: Comparative photosynthesis of sun and shade plants. - Annu. Rev. Plant Phys. 28: 355-377, 1977. Go to original source...
  7. Casal J. J.: Shade avoidance. - The Arabidopsis Book 10: e0157, 2012. Go to original source...
  8. Dudley S. A., Schmitt J.: Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. - Funct. Ecol. 9: 655-666, 1995. Go to original source...
  9. Echarte L., Maggiora A. D., Cerrudo D. et al.: Yield response to plant density of maize and sunflower intercropped with soybean. - Field Crop. Res. 121: 423-429, 2011. Go to original source...
  10. Evans J. R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. - Oecologia 78: 9-19, 1989. Go to original source...
  11. Farquhar G. D., Sharkey T. D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant Phys. 33: 317-345, 1982. Go to original source...
  12. Francis C. A.: Biological efficiencies in multiple-cropping systems. - Adv. Agron. 42: 1-42, 1989. Go to original source...
  13. Franklin K. A., Whitelam G. C.: Phytochromes and shadeavoidance responses in plants. - Ann. Bot.-London 96: 169-175, 2005. Go to original source...
  14. Fritschi F. B., Ray J. D.: Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. - Photosynthetica 45: 92-98, 2007. Go to original source...
  15. Gao Y., Duan A., Qiu X. et al.: Distribution of roots and root length density in a maize/soybean strip intercropping system. - Agr. Water Manage. 98: 199-212, 2010. Go to original source...
  16. Gao Y., Duan A., Sun J. et al.: Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. - Field Crop. Res. 111: 65-73, 2009. Go to original source...
  17. Ghanbari A., Dahmardeh M., Siahsar B. A. et al.: Effect of maize (Zea mays L.) - cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. - J. Food Agric. Environ. 8: 102-108, 2010. Go to original source...
  18. Ghosh P. K., Tripathi A. K., Bandyopadhyay K. K. et al.: Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. - Eur. J. Agron. 31: 43-50, 2009. Go to original source...
  19. Givnish T. J.: Adaptation to sun and shade: a whole-plant perspective. - Aust. J. Plant. Physiol. 15: 63-92, 1988. Go to original source...
  20. Gommers C. M., Visser E. J., St Onge K. R. et al.: Shade tolerance: when growing tall is not an option. - Trends Plant Sci. 18: 65-71, 2013. Go to original source...
  21. Keating B. A., Carberry P. S.: Resource capture and use in intercropping: solar radiation. - Field Crop. Res. 34: 273-301, 1993. Go to original source...
  22. Knörzer H., Grözinger H., Graeff-Hönninger S. et al.: Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. - Field Crop. Res. 121: 274-285, 2011. Go to original source...
  23. Lichtenthaler H. K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  24. Lithourgidis A. S., Vlachostergios D. N., Dordas C. A. et al.: Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. - Eur. J. Agron. 34: 287-294, 2011. Go to original source...
  25. Makino A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. - Plant Physiol. 155: 125-129, 2011. Go to original source...
  26. Malézieux E., Crozat Y., Dupraz C. et al.: Mixing plant species in cropping systems: Concepts, tools and models. A review. - Agron. Sustain. Dev. 29: 43-62, 2009. Go to original source...
  27. Manceur A. M., Boland G. J., Thevathasan N. V. et al.: Dry matter partitions and specific leaf weight of soybean change with tree competition in an intercropping system. - Agroforest. Syst. 76: 295-301, 2009. Go to original source...
  28. Murchie E. H., Chen Y. Z., Hubbart S. et al.: Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. - Plant Physiol. 119: 553-564, 1999. Go to original source...
  29. Mushagalusa G. N., Ledent J. F., Draye X.: Shoot and root competition in potato/maize intercropping: Effects on growth and yield. - Environ. Exp. Bot. 64: 180-188, 2008. Go to original source...
  30. Niinemets Ü.: Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
  31. Niinemets Ü.: Photosynthesis and resource distribution through plant canopies. - Plant Cell Environ. 30: 1052-1071, 2007. Go to original source...
  32. Niinemets Ü.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. - Ecol. Res. 25: 693-714, 2010. Go to original source...
  33. Portsmuth A., Niinemets Ü.: Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. - Funct. Ecol. 21: 61-77, 2007. Go to original source...
  34. Sánchez-Gómez D., Valladares F., Zavala, M. A.: Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. - Tree Physiol. 26: 1425-1433, 2006. Go to original source...
  35. Shili-Touzi I., De Tourdonnet S., Launay M. et al.: Does intercropping winter wheat (Triticum aestivum) with red fescue (Festuca rubra) as a cover crop improve agronomic and environmental performance? A modeling approach. - Field Crop. Res. 116: 218-229, 2010. Go to original source...
  36. Smith H.: Phytochromes and light signal perception by plants - an emerging synthesis. - Nature 407: 585-591, 2000. Go to original source...
  37. Terashima I., Hanba Y. T., Tazoe Y. et al.: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. - J. Exp. Bot. 57: 343-354, 2006. Go to original source...
  38. Terashima I., Hanba Y. T., Tholen D. et al.: Leaf functional anatomy in relation to photosynthesis. - Plant Physiol. 155: 108-116, 2011. Go to original source...
  39. Terashima I., Miyazawa S. I., Hanba Y. T.: Why are sun leaves thicker than shade leaves? - Consideration based on analyses of CO2 diffusion in the leaf. - J. Plant Res. 114: 93-105, 2001. Go to original source...
  40. Valladares F., Gianoli E., Saldaña A.: Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? - Ann. Bot.-London 108: 231-239, 2011. Go to original source...
  41. Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. - Annu. Rev. Ecol. Evol. S. 39: 237-257, 2008. Go to original source...
  42. Valladares F., Wright S. J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. - Ecology 81: 1925-1936, 2000. Go to original source...
  43. Vandenbussche F., Pierik R., Millenaar F. F. et al.: Reaching out of the shade. - Curr. Opin. Plant Biol. 8: 462-468, 2005. Go to original source...
  44. Wallace S. U., Bacanamwo M., Palmer J. H. et al.: Yield and yield components of relay-intercropped wheat and soybean. - Field Crop. Res. 46: 161-168, 1996. Go to original source...
  45. Willey R. W.: Intercropping: its importance and research needs. I. Competition and yield advantages. - Field Crop Abstracts 32: 1-10, 1979.
  46. Ye Z. P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. - Photosynthetica 45: 637-640, 2007. Go to original source...
  47. Zhang L., van der Werf W., Bastiaans L. et al.: Light interception and utilization in relay intercrops of wheat and cotton. - Field Crop. Res. 107: 29-42, 2008. Go to original source...