Photosynthetica 2009, 47(4):483-498 | DOI: 10.1007/s11099-009-0074-8

Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis

D. Lazár1,2,*
1 Laboratory of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
2 Photon Systems Instruments, Ltd., Brno, Czech Republic

Theoretical modelling is often overlooked in photosynthesis research even if it can significantly help with understanding of explored system. A new model of light-induced photosynthetic reactions occurring in and around thylakoid membrane is introduced here and used for theoretical modelling of not only the light-induced chlorophyll (Chl) a fluorescence rise (FLR; the O-J-I-P transient), reflecting function of photosystem II (PSII), but also of the 820 nmtransmittance signal (I820), reflecting function of photosystem I (PSI) and plastocyanin (PC), paralleling the FLR. Correctness of the model was verified by successful simulations of the FLR and I820 signal as measured with the control (no treatment) sample but also as measured with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone- (inhibits electron transport in cytochrome b 6/f) and methylviologen- (accepts electrons from iron-sulphur cluster of PSI) treated samples and with the control sample upon different intensities of excitation light. From the simulations performed for the control sample, contribution of the oxidised donor of PSI, P700, and oxidised PC to the I820 signal minimum (reflects maximal accumulations of the two components) was estimated to be 75% and 25%, respectively. Further in silico experiments showed that PC must be reduced in the dark, cyclic electron transport around PSI must be considered in the model and activation of ferredoxin-NADP+-oxidoreductase (FNR) also affects the FLR. Correct simulations of the FLR and I820 signal demonstrate robustness of the model, confirm that the electron transport reactions occurring beyond PSII affect the shape of the FLR, and show usefulness and perspective of theoretical approach in studying of the light-induced photosynthetic reactions.

Additional key words: cytochrome b6, f; ferredoxin-NADP+-oxidoreductase; photosystem I; photosystem II; theory

Received: May 22, 2009; Accepted: September 24, 2009; Published: December 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lazár, D. (2009). Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis. Photosynthetica47(4), 483-498. doi: 10.1007/s11099-009-0074-8
Download citation

References

  1. Baake, E., Schlöder, J.P.: Modelling the fast fluorescence rise of photosynthesis. - Bull. Math. Biol. 54: 999-1021, 1992. Go to original source...
  2. Bennoun, P.: Evidence for a respiratory chain in the chloroplast. - Proc. Natl. Acad. Sci. USA 79: 4352-4356, 1982. Go to original source...
  3. Bukhov, N., Carpentier, R.: Alternative photosystem I-driven electron transport routes: mechanisms and functions. - Photosynth. Res. 82: 17-33, 2004. Go to original source...
  4. Carrillo, N., Lucero, H.A., Vallejos, R.H.: Light modulation of chloroplast membrane-bound ferredoxin-NADP+ oxidoreductase. - J. Biol. Chem. 256: 1058-1059, 1981. Go to original source...
  5. Cramer, W.A., Zhang, H.: Consequences of the structure of the cytochrome b 6 f complex for its charge transfer pathways. - Biochim. Biophys. Acta 1757: 339-345, 2006. Go to original source...
  6. Crofts, A.R., Wraight, C.A.: The electrochemical domain of photosynthesis. - Biochim. Biophys. Acta 726: 149-185, 1983. Go to original source...
  7. Dau, H.: Molecular mechanism and quantitative models of variable photosystem II fluorescence. - Photochem. Photobiol. 60: 1-23, 1994. Go to original source...
  8. Dau, H., Windecker, R., Hansen, U.-P.: Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. - Biochim. Biophys. Acta 1057: 337-345, 1991. Go to original source...
  9. Duysens, L.N.M., Sweers, H.E.: Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. - In: Japanese Society of Plant Physiologists (ed.): Studies on Microalgae and Photosynthetic Bacteria. Pp 353-372. Univ.Tokyo Press, Tokyo 1963.
  10. Feild, T.S., Nedbal, L., Ort, D.R.: Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. - Plant Physiol. 116: 1209-1218, 1998. Go to original source...
  11. Giersch, C.: Mathematical modelling of metabolism. - Curr. Opin. Plant Biol. 3: 249-253, 2000. Go to original source...
  12. Govindjee: 63 years since Kautsky - chlorophyll a fluorescence. - Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  13. Guissé, B., Srivastava, A., Strasser, R.J.: The polyphasic rice of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. - Arch. Sci. 48: 147-160, 1995.
  14. Harbinson, J., Woodward, F.I.: The use of light-induced absorbance changes at 820 nm to monitor the oxidation state of P-700 in leaves. - Plant Cell Environ. 10: 131-140, 1987. Go to original source...
  15. Heredia, P., De Las Rivas, J.: Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool. - J. Plant Physiol. 160: 1499-1506, 2003. Go to original source...
  16. Holtgrefe, S., Bader, K.P., Horton, P., Scheibe, R., von Schaewen, A., Backhausen, J.E.: Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. - Plant Physiol. 133: 1768-1778, 2003. Go to original source...
  17. Ilík, P., Kouřil, R., Fiala, J., Nauš, J., Vácha, F.: Spectral characterization of chlorophyll fluorescence in barley leaves during linear heating. Analysis of high-temperature fluorescence rise around 60°C. - J. Photochem. Photobiol. 59: 103-114, 2000. Go to original source...
  18. Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R.J., Barták, M.: A dip in the chlorophyll fluorescence induction at 0.2 - 2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. - Biochim. Biophys. Acta 1757: 12-20, 2006. Go to original source...
  19. Jablonsky, J., Lazar, D.: Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. - Biophys. J. 94: 2725-2736, 2008. Go to original source...
  20. Jablonsky, J., Susila, P., Lazar, D.: Impact of dimeric organization of enzyme on its function: the case of photosynthetic water splitting. - Bioinformatics 24: 2755-2759, 2008. Go to original source...
  21. Johnson, G.N.: Cyclic electron transport in C3 plants: fact or artefact? - J. Exp. Bot. 56: 407-416, 2005. Go to original source...
  22. Joliot, A., Joliot, P.: Étude cinétique de la réaction photochimique libérant l' oxygène au cours de la photosynthèse. - C. R. Acad. Sci. 258: 4622-4625, 1964.
  23. Joliot, P., Joliot, A.: Mechanism of electron transfer in the cytochrome b/f complex of algae: Evidence for a semiquinone cycle. - Proc. Natl. Acad. Sci. USA 91: 1034-1038, 1994. Go to original source...
  24. Joliot, P., Joliot, A.: Quantification of cyclic and linear flows in plants. - Proc. Natl. Acad. Sci. USA 102: 4913-4918, 2005. Go to original source...
  25. Joly, D., Bigras, C., Harnois, J., Govindachary, S., Carpentier, R.: Kinetic analyses of the OJIP chlorophyll fluorescence rise in thylakoid membranes. - Photosynth. Res. 84: 107-112, 2005. Go to original source...
  26. Kirchhoff, H., Schöttler, M.A., Maurer, J., Weis E.: Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. - Biochim. Biophys. Acta 1659: 63-72, 2004. Go to original source...
  27. Klughammer, C., Schreiber, U.: An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. - Planta 192: 261-268, 1994. Go to original source...
  28. Kroon, B.M.A., Thoms, S.: From electron to biomass: A mechanistic model to describe phytoplankton photosynthesis and steady-state growth rates. - J. Phycol. 42: 593-609, 2006. Go to original source...
  29. Kurreck, J., Schödel, R., Renger, G.: Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments. - Photosynth. Res. 63: 171-182, 2000. Go to original source...
  30. Laisk, A., Eichelmann, H., Oja, V.: C3 photosynthesis in silico. - Photosynth. Res. 90: 45-66, 2006. Go to original source...
  31. Lazár, D.: Chlorophyll a fluorescence induction. - Biochim. Biophys. Acta 1412: 1-28, 1999. Go to original source...
  32. Lazár, D.: Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. - J. Theor. Biol. 220: 469-503, 2003. Go to original source...
  33. Lazár, D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  34. Lazár, D., Ilík, P.: High-temperature induced chlorophyll fluorescence changes in barley leaves - Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. - Plant Sci. 124: 159-164, 1997. Go to original source...
  35. Lazár, D., Jablonský, J.: On the approaches applied in formulation of a kinetic model of photosystem II: Different approaches lead to different simulations of the chlorophyll a fluorescence transients. - J. Theor. Biol. 257: 260-269, 2009. Go to original source...
  36. Lazár, D., Kaňa, R., Klinkovský, T., Nauš, J.: Experimental and theoretical study on high temperature induced changes in chlorophyll a fluorescence oscillations in barley leaves upon 2 % CO2. - Photosynthetica 43: 13-27, 2005. Go to original source...
  37. Lazár, D., Nauš, J., Matoušková, M., Flašarová, M.: Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. - Pestic. Biochem. Physiol. 57: 200-210, 1997. Go to original source...
  38. Lazár, D., Pospíšil, P.: Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. - Eur. Biophys. J. 28: 468-477, 1999. Go to original source...
  39. Lazár, D., Schansker, G.: Models of chlorophyll a fluorescence transients. - In: Laisk, A., Nedbal, L., Govindjee (ed.): Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems. Pp 85-123. Springer, Dordrecht 2009. Go to original source...
  40. Lebedeva, G.V., Belyaeva, N.E., Demin, O.V., Riznichenko, G.Y., Rubin, A.B.: A kinetic model of primary photosynthetic processes. Description of the fast phase of chlorophyll fluorescence induction under different light intensities. - Biofizika 47: 1044-1058, 2002.
  41. McClendon, J.H., Fukshansky, L.: On the interpretation of absorption-spectra of leaves. 2. The nonabsorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf. - Photochem. Photobiol. 51: 211-216, 1990. Go to original source...
  42. Mendes, P.: GEPASI - a software package for modelling the dynamics, steady states and control of biochemical and other systems. - Comput. Appl. Biosci. 9: 563-571, 1993. Go to original source...
  43. Oja, V., Bichele, I., Hüve, K., Rasulov, B., Laisk, A.: Reductive titration of photosystem I and differential extinction coefficient of P700+ at 810-950 nm in leaves. - Biochim. Biophys. Acta 1658: 225-234, 2004. Go to original source...
  44. Pospíšil, P., Dau, H.: Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. - Photosynth. Res. 65: 41-52, 2000. Go to original source...
  45. Pospíšil, P., Dau, H.: Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. - Biochim. Biophys. Acta 1554: 94-100, 2002. Go to original source...
  46. Rios-Estepa, R., Lange, B.M.: Experimental and mathematical approaches to modeling plant metabolic network. - Phytochemistry 68: 2351-2374, 2007. Go to original source...
  47. Rubin, A.B., Riznichenko, G.: Modeling of the primary processes in a photosynthetic membrane. - In: Laisk, A., Nedbal, L., Govindjee (ed.): Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems. Pp 151-176. Springer, Dordrecht 2009.
  48. Santabarbara, S., Heathcote, P., Evans, M.C.V.: Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron-sulfur cluster FX. - Biochim. Biophys. Acta 1708: 283-310, 2005. Go to original source...
  49. Satoh, K.: Fluorescence induction and activity of ferredoxin-NADP+ reductase in Bryopsis chloroplasts. - Biochim. Biophys. Acta 638: 327-333, 1981. Go to original source...
  50. Schansker, G., Srivastava, A., Govindjee, Strasser, R.J.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. - Funct. Plant Biol. 30: 785-796, 2003. Go to original source...
  51. Schansker, G., Tóth, S.Z., Strasser, R.J.: Methylviologen and dibromorhymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - Biochim. Biophys. Acta 1706: 250-261, 2005. Go to original source...
  52. Schreiber, U., Neubauer, C.: O2-dependent electron flow, membrane energization and the mechanism of nonphotochemical quenching of chlorophyll fluorescence. - Photosynth. Res. 25: 279-293, 1990. Go to original source...
  53. Stirbet, A., Govindjee, Strasser, B.J., Strasser, R.J.: Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. - J. Theor. Biol. 193: 131-151, 1998. Go to original source...
  54. Strasser, B.J.: Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  55. Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  56. Strasser, R.J., Stirbet, A.D.: Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P - Fitting of experimental data to three different PS II models. - Math. Comput. Simulat. 56: 451-461, 2001. Go to original source...
  57. Sušila, P., Lazár, D., Ilík, P., Tomek, P., Nauš, J.: The gradient of exciting radiation within a sample affects relative heights of steps in the fast chlorophyll a fluorescence rise. - Photosynthetica 42: 161-172, 2004. Go to original source...
  58. Tomek, P., Lazár, D., Ilík, P., Nauš, J.: On the intermediate steps between the O and P steps in chlorophyll alpha fluorescence rise measured at different intensities of exciting light. - Aust. J. Plant Physiol. 28: 1151-1160, 2001. Go to original source...
  59. Tóth, S.Z., Schansker, G., Strasser, R.J.: In intact leaves, the maximum fluorescence level (F M) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. - Biochim. Biophys. Acta 1708: 275-282, 2005. Go to original source...
  60. Tsimilli-Michael, M., Pêcheux, M., Strasser, R.J.: Vitality and stress adaptation of the symbionts of coral reef and temperature foraminifers probed in hospite by the fluorescence kinetics OJIP. - Arch. Sci. 51: 205-240, 1998.
  61. van Thor, J.J., Geerlings, T.H., Matthijs, H.C.P., Hellingwerf, K.J.: Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/ferredoxin/ferredoxin:NADP+ reductase in a cyanobacterium. - Biochemistry 38: 12735-12746, 1999. Go to original source...
  62. Vernotte, C., Etienne, A.-L., Briantais, J.-M.: Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. - Biochim. Biophys. Acta 545: 519-527, 1979. Go to original source...
  63. Vredenberg, W.J.: A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination. - Biophys. J. 79: 26-38, 2000. Go to original source...
  64. Vredenberg, W.J., Bulychev, A.A.: Photo-electrochemical control of photosystem II chlorophyll fluorescence in vivo. - Bioelectrochem. 57: 123-128, 2002. Go to original source...
  65. Vredenberg, W., Prášil, O.: Modeling of chlorophyll a fluorescence kinetics in plant cells: derivation of a descriptive algorithm. - In: Laisk, A., Nedbal, L., Govindjee (ed.): Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems. Pp 125-149. Springer, Dordrecht 2009. Go to original source...
  66. Zhu, X.-G., Govindjee, Baker, N.R., deSturler, E., Ort, D.R., Long, S.P.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. - Planta 223: 114-133, 2005. Go to original source...