Photosynthetica 2005, 43(4):615-619 | DOI: 10.1007/s11099-005-0096-9

Photosynthetic response of Quercus ilex L. plants grown on compost and exposed to increasing photon flux densities and elevated CO2

C. Arena1,*, L. Vitale1, A. Virzo De Santo1
1 Dipartimento di Biologia Strutturale e Funzionale, Universita di Napoli Federico II, Napoli, Italia

Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 µmol(CO2) mol-1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (PN) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher PN and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.

Additional key words: chlorophyll fluorescence induction; electron transport rate; irradiance; nitrate; oak; non-photochemical quenching

Received: March 7, 2005; Accepted: June 7, 2005; Published: December 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Arena, C., Vitale, L., & De Santo, A.V. (2005). Photosynthetic response of Quercus ilex L. plants grown on compost and exposed to increasing photon flux densities and elevated CO2. Photosynthetica43(4), 615-619. doi: 10.1007/s11099-005-0096-9
Download citation

References

  1. Allen, S.E.: Chemical Analysis of Ecological Materials. - Blackwell Scientific Publications, Oxford - London 1974.
  2. Backhausen, J.E., Kitzmann, C., Scheibe, R.: Competition between electron acceptors in photosynthesis: Regulation of the malate valve during CO2 fixation and nitrite reduction. - Photosynth. Res. 42: 75-86, 1994. Go to original source...
  3. Bilger, W., Bjorkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990. Go to original source...
  4. Bloom, A.J., Smart, D.R., Nguyen, D.T., Searles, P.S.: Nitrogen assimilation and growth of wheat under elevated carbon dioxide. - Proc. nat. Acad. Sci. USA 99: 1730-1735, 2002. Go to original source...
  5. Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. - Planta 153: 376-387, 1981. Go to original source...
  6. Cheng, L.: Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. - J. exp. Bot. 54: 385-393, 2003. Go to original source...
  7. Da Matta, F.M., Loos, R.A., Silva, E.A., Loureiro, M.E.: Limitation of photosynthesis in Coffea canephora as a result of nitrogen and water availability. - J. Plant Physiol. 159: 975-981, 2002. Go to original source...
  8. De la Torre, A., Delgado, B., Lara, C.: Nitrate-dependent O2 evolution in intact leaves. - Plant Physiol. 96: 898-901, 1991. Go to original source...
  9. Demmig-Adams, B., Adams, W.W., III, Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plant. 98: 253-264, 1996. Go to original source...
  10. Dong, C.X., Zhao, S.J., Tian, J.C., Meng, Q.W., Zou, Q.: [Effects of different concentration of NO3 - on the chlorophyll fluorescence parameters in seedling leaves of high protein wheat cultivars.] - Acta agron. sin. 28: 59-64, 2002. [In Chin.]
  11. Edwards, G.E., Baker, N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? - Photosynth. Res. 37: 89-102, 1993. Go to original source...
  12. Garcia, C., Hernandez, T., Costa, F.: Composted vs uncomposted organics. - Biocycle 33: 70-72, 1992.
  13. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  14. Godde, D., Hefer, M.: Photoinhibition and light-dependent turnover of the D1 reaction centre polypeptide of photosystem II are enhanced by mineral-stress conditions. - Planta 193: 290-299, 1994. Go to original source...
  15. Griffin, K.L., Tissue, D.T., Turnbull, M.H., Whitehead, D.: The onset of photosynthetic acclimation to elevated CO2 partial pressure in field-grown Pinus radiata D. Don. after 4 years. - Plant Cell Environ. 23: 1089-1098, 2000. Go to original source...
  16. Hogan, K.P., Fleck, I., Bungard, R., Cheeseman, J.M., Whitehead, D.: Effect of elevated CO2 on the utilization of light energy in Nothofagus fusca and Pinus radiata. - J. exp. Bot. 48: 1289-1297, 1997. Go to original source...
  17. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655-684, 1996. Go to original source...
  18. Joel, G., Gamon, J.A., Field, C.B.: Production efficiency in sunflower: the role of water and nitrogen stress. - Remote Sens. Environ. 62: 176-188, 1997. Go to original source...
  19. Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. - Physiol. Plant. 86: 180-187, 1992. Go to original source...
  20. Lawlor, D.W.: Photosynthesis, productivity and environment. - J. exp. Bot. 46: 1449-1461, 1995. Go to original source...
  21. Lawlor, D.W.: Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production system. - J. exp. Bot. 46: 773-787, 2002. Go to original source...
  22. Lima, J.D., Mosquim, P.R., Da Matta, F.M.: Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorous deficiency - Photosynthetica 37: 113-121, 1999. Go to original source...
  23. Liu, H.Q., Jiang, G.M., Zhang, Q. D., Sun, J.Z., Guo, R.J., Gao, L.M., Bai, K.Z., Kuang, T.Y.: Gas exchange responses to CO2 concentration instantaneously elevated in flag leaves of winter wheat cultivars released in different years. - Photosynthetica 40: 237-242, 2002. Go to original source...
  24. Lu, C., Zhang, J.: Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. - Plant Sci. 151: 135-143, 2000. Go to original source...
  25. Makino, A., Sakashita, H., Hidema, J., Mae, T., Ojima, K., Osmond, B.: Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationship to CO2-transfer resistance. - Plant Physiol. 100: 1737-1743, 1992. Go to original source...
  26. Matt, P., Geiger, M., Walch-Liu, P., Engels, C., Krapp, A., Stitt, M.: Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. - Plant Cell Environ. 24: 1119-1137, 2001. Go to original source...
  27. Ministero delle Risorse Agricole, Alimentari e Forestali: Metodi Ufficiali di analisi chimica del suolo. [Official Methods of Soil Analysis.] - Osservatorio Nazionale Pedologico Qualita Suolo, Roma 1994. [In Ital.]
  28. Mourcuende, R., Krapp, A., Hurry, V., Stitt, M.: Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of alpha-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tabacco leaves. - Planta 206: 394-409, 1998. Go to original source...
  29. Muller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  30. Nakano, H., Makino, A., Mae, T.: The effects of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. - Plant Physiol. 115: 191-198, 1997. Go to original source...
  31. Ouedraogo, E., Mando, A., Zombre, N.P.: Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. - Agr. Ecos. Environ. 84: 259-266, 2001. Go to original source...
  32. Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Raines, C.A., Long, S.P.: Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. - Plant Physiol. 118: 683-689, 1998. Go to original source...
  33. Rogers, G.S., Milham, P.J., Gillings, M., Conroy, J.P.: Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. - Aust. J. Plant Physiol. 23: 253-264, 1996. Go to original source...
  34. Sage, R.F.: A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. - Plant Physiol. 94: 1728-1734, 1990. Go to original source...
  35. Schelegel, A.J.: Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. - J. Prod. Agric. 5: 153-157, 1992. Go to original source...
  36. Searles, P.S., Bloom, A.J.: Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. - Plant Cell Environ. 26: 1247-1255, 2003. Go to original source...
  37. Wu, J.C.V., Allen, L.H., Boote, K.L., Bowes, G.: Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. - Plant Cell Environ. 20: 68-76, 1997. Go to original source...
  38. Wykoff, D.D., Davies, J.P., Melis, A., Grossman, A.R.: The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. - Plant Physiol. 117: 129-139, 1998. Go to original source...