Skip to main content
Log in

Expanding the toolbox for predictive parameters describing antibody stability considering thermodynamic and kinetic determinants

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Introduction of the activation energy (Ea) as a kinetic parameter to describe and discriminate monoclonal antibody (mAb) stability.

Methods

Ea is derived from intrinsic fluorescence (IF) unfolding thermograms. An apparent irreversible three-state fit model based on the Arrhenius integral is developed to determine Ea of respective unfolding transitions. These activation energies are compared to the thermodynamic parameter of van´t Hoff enthalpies (∆Hvh). Using a set of 34 mAbs formulated in four different formulations, both the apparent thermodynamic and kinetic parameters together with apparent melting temperatures are correlated collectively with each other to storage stabilities to evaluate its predictive power with respect to long-term effects potentially reflected in shelf-life.

Results

Ea allows for the discrimination of (i) different parent mAbs, (ii) different variants that originate from parent mAbs, and (iii) different formulations. Interestingly, we observed that the Ea of the CH2 unfolding transition shows strongest correlations with monomer and aggregate content after storage at accelerated and stress conditions when collectively compared to ∆Hvh and Tm of the CH2 transition. Moreover, the predictive parameters determined for the CH2 domain show generally stronger correlations with monomer and aggregate content than those derived for the Fab. Qualitative assessment by ranking Ea of the Fab domain showed good agreement with monomer content in storage stabilities of individual mAb sub-sets.

Conclusion

Ea from IF unfolding transitions can be used in addition to other commonly used thermodynamic predictive parameters to discriminate and characterize thermal stability of different mAbs in different formulations. Hence, it shows great potential for antibody engineering and formulation scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

α:

degree of conversion

∆Hvh :

change of van´t Hoff enthalpy

A:

frequency factor

ANOVA:

analysis of variance

Ar :

solution of the Arrhenius integral

B:

heating rate

c:

intercept of the irreversible three-state model

CH domain:

constant domain of the antibody heavy chain

CHO:

Chinese hamster ovary

D1 :

first denatured state

D2 :

second denatured state

DSC:

differential scanning calorimetry

Ea :

activation energy

F:

folded state

f:

state fraction

Fab:

fragment antigen binding

FE330 :

fluorescence emission at 330 nm

FE350 :

fluorescence emission at 350 nm

I:

intermediate state

IF:

intrinsic fluorescence

IgG1:

immunoglobulin type G isotype 1

K:

equilibrium constant

m:

linear slope of the irreversible three-state model

mAb:

monoclonal antibody

MWCO:

molecular weight cut off

NES:

novel experimental setup

R:

gas constant

S:

slope of the reversible three-state model

SEC:

size exclusion chromatography

T:

temperature

Tm :

melting temperature

U:

unfolded state

HP/UP-SEC:

high- performance /ultra- performance size exclusion chromatography

y:

data of the IF thermograms

Y:

single state data

Y0 :

intercept of the reversible three-state model

References

  1. Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Bioc. 2018;65:306–22.

    Article  CAS  Google Scholar 

  2. Amin S, Barnett GV, Pathak JA, Roberts CJ, Sarangapani PS. Protein aggregation, particle formation, characterization & rheology. Curr Opin Colloid In. 2014;19:438–49.

    Article  CAS  Google Scholar 

  3. Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH. Clinical Pharmacokinetics of Therapeutic Monoclonal Antibodies. Clin Pharmacokinet. 2010;49:493–507.

    Article  CAS  PubMed  Google Scholar 

  4. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the Assessment of Protein Aggregates in Pharmaceutical Biotech Product Development. Pharmaceutical Res. 2011;28:920–33.

    Article  Google Scholar 

  5. Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. Adv Protein Chem Str. 2011;84:41–61.

    CAS  Google Scholar 

  6. Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98:927–38.

    Article  CAS  PubMed  Google Scholar 

  7. Vlasak J, Ionescu R. Fragmentation of monoclonal antibodies. Mabs. 2011;3:253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharmaceut. 2005;289:1–30.

    Article  CAS  Google Scholar 

  9. Wang W, Nema S, Teagarden D. Protein aggregation—Pathways and influencing factors. Int J Pharmaceut. 2010;390:89–99.

    Article  CAS  Google Scholar 

  10. Zbacnik NJ, Henry CS, Manning MC. A Chemometric Approach Toward Predicting the Relative Aggregation Propensity: Aβ(1-42). J Pharm Sci. 2020;109:624–32.

    Article  CAS  PubMed  Google Scholar 

  11. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.

    Article  CAS  PubMed  Google Scholar 

  12. Lumry R, Eyring H. Conformation Changes of Proteins. J Phys Chem. 1954;58:110–20.

    Article  CAS  Google Scholar 

  13. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharmaceut. 1999;185:129–88.

    Article  CAS  Google Scholar 

  14. Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, et al. Examination of Thermal Unfolding and Aggregation Profiles of a Series of Developable Therapeutic Monoclonal Antibodies. Mol Pharmaceut. 2015;12:1005–17.

    Article  CAS  Google Scholar 

  15. Garidel P, Eiperle A, Blech M, Seelig J. Thermal and Chemical Unfolding of a Monoclonal IgG1 Antibody: Application of the Multistate Zimm-Bragg Theory. Biophys J. 2020;118:1067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seelig J. Cooperative protein unfolding. A statistical-mechanical model for the action of denaturants. Biophys Chem. 2018;233:19–25.

    Article  CAS  PubMed  Google Scholar 

  17. Seelig J, Schönfeld H-J. Thermal protein unfolding by differential scanning calorimetry and circular dichroism spectroscopy Two-state model versus sequential unfolding. Q Rev Biophys. 2016;49:e9.

    Article  PubMed  Google Scholar 

  18. Zimm BH, Bragg JK. Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains. J Chem Phys. 1959;31:526–35.

    Article  CAS  Google Scholar 

  19. Mazurenko S, Kunka A, Beerens K, Johnson CM, Damborsky J, Prokop Z. Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Sci Rep-uk. 2017;7:16321.

    Article  Google Scholar 

  20. Bedouelle H. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer. Biochimie. 2016;121:29–37.

    Article  CAS  PubMed  Google Scholar 

  21. Colón W, Church J, Sen J, Thibeault J, Trasatti H, Xia K. Biological Roles of Protein Kinetic Stability. Biochemistry-us. 2017;56:6179–86.

    Article  Google Scholar 

  22. Finkelstein AV, Badretdin AJ, Galzitskaya OV, Ivankov DN, Bogatyreva NS, Garbuzynskiy SO. There and back again: Two views on the protein folding puzzle. Phys Life Rev. 2017;21:56–71.

    Article  PubMed  Google Scholar 

  23. Nemergut M, Žoldák G, Schaefer JV, Kast F, Miškovský P, Plückthun A, et al. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering. Protein Sci. 2017;26:2229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96:1–26.

    Article  CAS  PubMed  Google Scholar 

  25. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.

    Article  CAS  PubMed  Google Scholar 

  26. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech [Internet]. 2010;21:167–93 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21119929.

    PubMed Central  Google Scholar 

  27. Clarkson BR, Schön A, Freire E. Conformational stability and self-association equilibrium in biologics. Drug Discov Today. 2016;21:342–7.

    Article  CAS  PubMed  Google Scholar 

  28. Garidel P, Hegyi M, Bassarab S, Weichel M. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008;3:1201–11.

    Article  CAS  PubMed  Google Scholar 

  29. Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Analytical Biochem. 2018;561–562:70–88.

    Article  Google Scholar 

  30. Dennis B, P L, A. S, F. S, Patrick G, Blech M. Getting the Full Picture: Predicting the Aggregation propensity of mAbs Using Chemical and Thermal Denaturation on a Single, Fully Automated Platform. Application Note NT-PR-011. 2016;1–7.

  31. Eftink MR. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994;66:482–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melien R, Garidel P, Hinderberger D, Blech M. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling. Pharmaceutical Research [Internet]. 2020;37:78. Available from: https://doi.org/10.1007/s11095-020-02792-1

  33. Bianco V, Franzese G, Coluzza I. In Silico Evidence That Protein Unfolding is a Precursor of Protein Aggregation. Chemphyschem. 2020;21:377–84.

    Article  CAS  PubMed  Google Scholar 

  34. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of Aggregation Prone Regions of Therapeutic Proteins. J Phys Chem B. 2010;114:6614–24.

    Article  CAS  PubMed  Google Scholar 

  35. Ebo JS, Guthertz N, Radford SE, Brockwell DJ. Using protein engineering to understand and modulate aggregation. Curr Opin Struc Biol. 2020;60:157–66.

    Article  CAS  Google Scholar 

  36. Kerwin BA, Bennett C, Brodsky Y, Clark R, Floyd JA, Gillespie A, et al. Framework Mutations of the 10-1074 bnAb Increase Conformational Stability, Manufacturability, and Stability While Preserving Full Neutralization Activity. J Pharm Sci. 2020;109:233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL. Developability index: A rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci. 2012;101:102–15.

    Article  CAS  PubMed  Google Scholar 

  38. Prabakaran R, Rawat P, Thangakani AM, Kumar S, Gromiha MM. Protein aggregation: in silico algorithms and applications. Biophysical Rev. 2021;13:71–89.

    Article  CAS  Google Scholar 

  39. Seeliger D, Schulz P, Litzenburger T, Spitz J, Hoerer S. Blech M, et al. Boosting antibody developability through rational sequence optimization. mAbs. 2015;7:505–15.

    CAS  PubMed  Google Scholar 

  40. Pérez A-MW, Sormanni P, Andersen JS, Sakhnini LI, Rodriguez-Leon I, Bjelke JR, et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library. Mabs. 2018;11:388–400.

    Article  Google Scholar 

  41. van der Kant R, Karow-Zwick AR, Durme JV, Blech M, Gallardo R, Seeliger D, et al. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. J Mole Biol. 2017;429:1244–61.

    Article  Google Scholar 

  42. Willis LF, Kumar A, Jain T, Caffry I, Xu Y, Radford SE, et al. The uniqueness of flow in probing the aggregation behavior of clinically relevant antibodies. Eng Reports. 2020;2.

  43. Kumar S, Singh SK. Developability of Biotherapeutics: Computational Approaches [Internet]. CRC Press; 2016. Available from: https://books.google.de/books?id=FI_wCgAAQBAJ

  44. Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. Mabs. 2009;1:254–67.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bergemann K, Eckermann C, Garidel P, Grammatikos S, Jacobi A, Kaufmann H, et al. Production and downstream processing. Handbook Therap Antibodies. 2007:199–237.

  46. Wang S, Raghani A. Arginine as an eluent for automated on-line Protein A/size exclusion chromatographic analysis of monoclonal antibody aggregates in cell culture. J Chromatogr B. 2014;945:115–20.

    Article  Google Scholar 

  47. Yumioka R, Sato H, Tomizawa H, Yamasaki Y, Ejima D. Mobile phase containing arginine provides more reliable SEC condition for aggregation analysis. J Pharm Sci. 2010;99:618–20.

    Article  CAS  PubMed  Google Scholar 

  48. Garidel P. Steady-state intrinsic tryptophan protein fluorescence spectroscopy in pharmaceutical biotechnology. Spectroscopy Eur. 2008;4:7–11.

    Google Scholar 

  49. Garidel P, Karow AR, Blech M. Orthogonal spectroscopic techniques for the early developability assessment of therapeutic protein candidates. Spectroscopic Eur. 2014;4:9–13.

    Google Scholar 

  50. Cai J, Yao F, Yi W, He F. New temperature integral approximation for nonisothermal kinetics. Aiche J. 2006;52:1554–7.

    Article  CAS  Google Scholar 

  51. Cai J, Liu R. An improved version of Junmeng–Fang–Weiming–Fusheng approximation for the temperature integral. J Math Chem. 2008;43:1193–8.

    Article  CAS  Google Scholar 

  52. Boehm K, Guddorf J, Albers A, Kamiyama T, Fetzner S, Hinz H-J. Thermodynamic Analysis of Denaturant-Induced Unfolding of HodC69S Protein Supports a Three-State Mechanism. Biochemistry-us. 2008;47:7116–26.

    Article  CAS  Google Scholar 

  53. Temel DB, Landsman P, Brader ML. Chapter Fourteen Orthogonal Methods for Characterizing the Unfolding of Therapeutic Monoclonal Antibodies Differential Scanning Calorimetry, Isothermal Chemical Denaturation, and Intrinsic Fluorescence with Concomitant Static Light Scattering. Methods Enzymol. 2016;567:359–89.

    Article  CAS  PubMed  Google Scholar 

  54. Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Bioph Res Co. 2007;355:751–7.

    Article  CAS  Google Scholar 

  55. Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97:1414–26.

    Article  CAS  PubMed  Google Scholar 

  56. Thakkar SV, Joshi SB, Jones ME, Sathish HA, Bishop SM, Volkin DB, et al. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies. J Pharm Sci. 2012;101:3062–77.

    Article  CAS  PubMed  Google Scholar 

  57. Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. Mabs. 2011;3:243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goldberg DS, Bishop SM, Shah AU, Sathish HA. Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: Role of conformational and colloidal stability. J Pharm Sci. 2011;100:1306–15.

    Article  CAS  PubMed  Google Scholar 

  59. Harn N, Allan C, Oliver C, Middaugh CR. Highly concentrated monoclonal antibody solutions: Direct analysis of physical structure and thermal stability. J Pharm Sci. 2007;96:532–46.

    Article  CAS  PubMed  Google Scholar 

  60. Maity H, O’Dell C, Srivastava A, Goldstein J. Effects of Arginine on Photostability and Thermal Stability of IgG1 Monoclonal Antibodies. Curr Pharm Biotechno. 2009;10:761–6.

    Article  CAS  Google Scholar 

  61. Andrews JM, Roberts CJ. A Lumry−Eyring Nucleated Polymerization Model of Protein Aggregation Kinetics: 1. Aggregation with Pre-Equilibrated Unfolding. J Phys Chem B. 2007;111:7897–913.

    Article  CAS  PubMed  Google Scholar 

  62. Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51.

    Article  CAS  PubMed  Google Scholar 

  63. Færgeman NJ, Sigurskjold BW, Kragelund BB, Andersen KV, Knudsen J. Thermodynamics of Ligand Binding to Acyl-Coenzyme A Binding Protein Studied by Titration Calorimetry †. Biochemistry-us. 1996;35:14118–26.

    Article  Google Scholar 

  64. Voordouw G, Milo C, Roche RS. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976;17:3716–24.

    Article  Google Scholar 

  65. Fujita SC, Go N, Imahori K. Melting-profile analysis of thermal stability of thermolysin. A formulation of temperature-scanning kinetics. Biochemistry-us. 1979;18:24–8.

    Article  CAS  Google Scholar 

  66. Andersen CB, Manno M, Rischel C, Thórólfsson M, Martorana V. Aggregation of a multidomain protein: A coagulation mechanism governs aggregation of a model IgG1 antibody under weak thermal stress. Protein Sci. 2010;19:279–90.

    Article  CAS  PubMed  Google Scholar 

  67. Ahrer K, Buchacher A, Iberer G, Jungbauer A. Thermodynamic stability and formation of aggregates of human immunoglobulin G characterised by differential scanning calorimetry and dynamic light scattering. J Biochem Bioph Meth. 2006;66:73–86.

    Article  CAS  Google Scholar 

  68. Saluja A, Sadineni V, Mungikar A, Nashine V, Kroetsch A, Dahlheim C, et al. Significance of Unfolding Thermodynamics for Predicting Aggregation Kinetics: A Case Study on High Concentration Solutions of a Multi-Domain Protein. Pharmaceut Res. 2014;31:1575–87.

    Article  CAS  Google Scholar 

  69. Eliseev IE, Yudenko AN, Besedina NA, Ulitin AB, Ekimova VM, Evdokimov SR, et al. Thermodynamic Analysis of the Conformational Stability of a Single-Domain Therapeutic Antibody. Tech Phys Lett. 2017;43:1088–91.

    Article  CAS  Google Scholar 

  70. Famm K, Hansen L, Christ D, Winter G. Thermodynamically Stable Aggregation-Resistant Antibody Domains through Directed Evolution. J Mol Biol. 2008;376:926–31.

    Article  CAS  PubMed  Google Scholar 

  71. Kim N, Remmele RL, Liu D, Razinkov VI, Fernandez EJ, Roberts CJ. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Biophys Chem [Internet]. 2013;172:26–36. Available from: http://www.sciencedirect.com/science/article/pii/S0301462212001524

  72. Barnett GV, Razinkov VI, Kerwin BA, Hillsley A, Roberts CJ. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1. J Pharm Sci. 2016;105:1066–73.

    Article  CAS  PubMed  Google Scholar 

  73. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–402.

    Article  CAS  PubMed  Google Scholar 

  74. Kayser V, Chennamsetty N, Voynov V, Helk B, Forrer K, Trout BL. Evaluation of a non-arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci. 2011;100:2526–42.

    Article  CAS  PubMed  Google Scholar 

  75. Wang W, Roberts CJ. Non-Arrhenius Protein Aggregation. Aaps J. 2013;15:840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharmaceut Res. 2003;20:1325–36.

    Article  CAS  Google Scholar 

  77. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. International journal of pharmaceutics [Internet]. 1999;185:129–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10460913. Accessed 2 Oct 2013

  78. Hari SB, Lau H, Razinkov VI, Chen S, Latypov RF. Acid-Induced Aggregation of Human Monoclonal IgG1 and IgG2: Molecular Mechanism and the Effect of Solution Composition. Biochemistry-us. 2010;49:9328–38.

    Article  CAS  Google Scholar 

  79. Mehta SB, Bee JS, Randolph TW, Carpenter JF. Partial Unfolding of a Monoclonal Antibody: Role of a Single Domain in Driving Protein Aggregation. Biochemistry-us. 2014;53:3367–77.

    Article  CAS  Google Scholar 

  80. Sahin E, Grillo AO, Perkins MD, Roberts CJ. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci [Internet]. 2010;99:4830–48 Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049249356, https://doi.org/10.1002/jps.22198. Accessed 6 Jul 2015

  81. Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions: Part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci [Internet]. 2011;100:2087–103. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79954531753, https://doi.org/10.1002/jps.22448. Accessed 7 Apr 2014

  82. Weiss WF, Young TM, Roberts CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009;98:1246–77.

    Article  CAS  PubMed  Google Scholar 

  83. Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. Aaps J. 2006;8:E572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu L, Olsen C, Maddux N, Joshi SB, Volkin DB, Middaugh CR. Investigation of Protein Conformational Stability Employing a Multimodal Spectrometer. Anal Chem. 2011;83:9399–405.

    Article  CAS  PubMed  Google Scholar 

  85. Samra HS, He F. Advancements in High Throughput Biophysical Technologies: Applications for Characterization and Screening during Early Formulation Development of Monoclonal Antibodies. Mol Pharmaceut. 2012;9:696–707.

    Article  CAS  Google Scholar 

  86. Cohen SL, Price C, Vlasak J. β-Elimination and Peptide Bond Hydrolysis: Two Distinct Mechanisms of Human IgG1 Hinge Fragmentation upon Storage. J Am Chem Soc. 2007;129:6976–7.

    Article  CAS  PubMed  Google Scholar 

  87. Gaza-Bulseco G, Liu H. Fragmentation of a Recombinant Monoclonal Antibody at Various pH. Pharmaceut Res. 2008;25:1881–90.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Philipp Baaske and David Ng from NanoTemper Technologies GmbH for ongoing support and the “German Federal Ministry of Education and Research, funding program KMU-innovativ Photonics Research Germany, contract number 13N14245“ for funding. We also thank Felicitas Wahl, Marina Rechsteiner, Sebastian Kube, and Gabriele Richter from Boehringer Ingelheim Pharma GmbH & Co. KG for technical assistance and Anna Schulze from NanoTemper Technologies GmbH for review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Blech.

Additional information

Guest Editors: Ahmed Besheer and Hanns-Christian Mahler

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blech, M., Melien, R., Tschammer, N. et al. Expanding the toolbox for predictive parameters describing antibody stability considering thermodynamic and kinetic determinants. Pharm Res 38, 2065–2089 (2021). https://doi.org/10.1007/s11095-021-03120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03120-x

Keywords

Navigation