Skip to main content

Advertisement

Log in

Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-siRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel is a first-line drug for the therapy of lung cancer, however, drug resistance is a serious limiting factor, related to overexpression of anti-apoptotic proteins like survivin. To overcome this phenomenon, developing novel ultrasound responsive nanobubbles - nanosized drug delivery system- for the delivery of paclitaxel and siRNA in order to silence survivin expression in the presence of ultrasound was aimed.

Methods

Paclitaxel-carrying nanobubble formulation was obtained by modifying the multistep method. Then, the complex formation of the nanobubbles - paclitaxel formulation with survivin-siRNA, was examined in terms of particle size, polydispersity index, zeta potential, and morphology. Furthermore, siRNA binding and protecting ability, cytotoxicity, cellular uptake, gene silencing, and induction of apoptosis studies were investigated in terms of lung cancer cells.

Results

Developed nanobubbles have particle sizes of 218.9–369.6 nm, zeta potentials of 27–34 mV, were able to protect siRNA from degradation and delivered siRNA into the lung cancer cells. Survivin expression was significantly lower compared with the control groups and enhanced apoptosis was induced by the co-delivery of survivin-siRNA and paclitaxel. Furthermore, significantly higher effects were obtained in the presence of ultrasound induction.

Conclusion

The ultrasound responsive nanobubble system carrying paclitaxel and survivin-siRNA is a promising and effective approach against lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DDAB:

Dimethyldiocta-decylammonium bromide

DMEM:

Dulbecco’s Modified Eagle’s Medium

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

NB:

Nanobubbles

NB-PTX:

Paclitaxel loaded nanobubbles

NB-PTX:siRNA:

siRNA carrying paclitaxel loaded nanobubbles

NSCLC:

Non-small cell lung cancer

OD:

Optical density

PDI:

Polydispersity index

SCLC:

Small cell lung cancer

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

siRNA:

Small interfering RNA

PBS:

Phosphate buffered saline

PFP:

Perfluoropentane

PTX:

Paclitaxel

TBS:

Tris-buffered saline

TEM:

Transmission electron microscopy

US:

Ultrasound

XTT:

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

ZP:

Zeta potential

References

  1. Mehta A, Dalle Vedove E, Isert L, Merkel OM. Targeting KRAS mutant lung Cancer cells with siRNA-loaded bovine serum albumin nanoparticles. Pharm Res. 2019;36:133.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Zhang M, Li G, Wang Y, Zhao S, Haihong P, Zhao H, et al. Expression in lung cancer and its correlation with driver mutations: a meta-analysis. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  3. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang JY, et al. NCCN guidelines insights: non–small cell lung Cancer, version 5.2018. J Natl Compr Cancer Netw. 2018;16:807–21.

    Article  Google Scholar 

  4. Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, et al. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015;41:527–39.

    Article  CAS  PubMed  Google Scholar 

  5. Ekinci M, Ilem-Ozdemir D, Gundogdu E, Asikoglu M. Methotrexate loaded chitosan nanoparticles: preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. J Drug Deliv Sci Technol. 2015;30:107–13.

    Article  CAS  Google Scholar 

  6. Akbaba H, Kantarcı AG, Erel AG. Development and in vitro evaluation of positive-charged solid lipid nanoparticles as nucleic acid delivery system in glioblastoma treatment. Marmara Pharm J. 2018;22:299–306.

    Article  CAS  Google Scholar 

  7. Messaoudi K, Saulnier P, Boesen K, Benoit J-P, Lagarce F. Anti-epidermal growth factor receptor siRNA carried by chitosan-transacylated lipid nanocapsules increases sensitivity of glioblastoma cells to temozolomide. Int J Nanomedicine. 2014;9:1479–90.

    PubMed  PubMed Central  Google Scholar 

  8. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther - Nucleic Acids. 2017;8:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Tang Y, Liu Y, Dou Y. Nucleic acid-based therapeutics for pulmonary diseases. AAPS PharmSciTech AAPS PharmSciTech. 2018;19:3670–80.

    Article  CAS  PubMed  Google Scholar 

  10. Ezrahi S, Aserin A, Garti N. Basic principles of drug delivery and microemulsions – the case of paclitaxel. Adv Colloid Interf Sci. 2019;263:95–130.

    Article  CAS  Google Scholar 

  11. Nguyen CN, Tran BN, Do TT, Nguyen H, Nguyen TN. D-optimal optimization and data-analysis comparison between a DoE software and artificial neural networks of a chitosan coating process onto PLGA nanoparticles for lung and cervical cancer treatment. J Pharm Innov. 2018;14:206–20.

    Article  Google Scholar 

  12. Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y, et al. Novel solid lipid nanoparticle with Endosomal escape function for Oral delivery of insulin. ACS Nano. 2017;5:1–15.

    CAS  Google Scholar 

  13. Patel K, Doddapaneni R, Patki M, Sekar V, Bagde A, Singh M. Erlotinib-Valproic acid Liquisolid formulation: evaluating Oral bioavailability and cytotoxicity in Erlotinib-resistant non-small cell lung Cancer cells. AAPS PharmSciTech. 2019;20:1–11.

    Article  CAS  Google Scholar 

  14. Thakur SS, Chen YS, Houston ZH, Fletcher N, Barnett NL, Thurecht KJ, et al. Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: an ex vivo evaluation. Eur J Pharm Biopharm. 2019;136:102–7.

    Article  CAS  PubMed  Google Scholar 

  15. Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G, et al. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009;381:160–5.

    Article  CAS  PubMed  Google Scholar 

  16. Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, et al. Vancomycin-loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017;523:176–88.

    Article  CAS  PubMed  Google Scholar 

  17. Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J Control Release. 2016;241:144–63.

    Article  CAS  PubMed  Google Scholar 

  18. Perera RH, Solorio L, Wu H, Gangolli M, Silverman E, Hernandez C, et al. Nanobubble ultrasound contrast agents for enhanced delivery of thermal sensitizer to tumors undergoing radiofrequency ablation. Pharm Res. 2014;31:1407–17.

    Article  CAS  PubMed  Google Scholar 

  19. Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir. 2006;22:7273–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm. 2013;456:437–45.

    Article  CAS  PubMed  Google Scholar 

  21. Hoosein MM, Barnes D, Khan AN, Peake MD, Bennett J, Purnell D, et al. The importance of ultrasound in staging and gaining a pathological diagnosis in patients with lung cancer—a two year single centre experience. Thorax. 2011;3:8–11.

    Google Scholar 

  22. Miller A. Practical approach to lung ultrasound. BJA Educ. 2016;16:39–45.

    Article  Google Scholar 

  23. Andolfi M, Potenza R, Capozzi R, Liparulo V, Puma F. The role of bronchoscopy in the diagnosis of early lung cancer : a review. J Thorac Dis. 2016;8:3329–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dooms C, Muylle I, Yserbyt J, Ninane V. Endobronchial ultrasound in the management of nonsmall cell lung cancer. Eur Respir Rev. 2013;22:169–77.

    Article  PubMed  Google Scholar 

  25. Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014;35:5148–61.

    Article  CAS  PubMed  Google Scholar 

  26. Alheshibri M, Craig VSJ. Armoured nanobubbles; ultrasound contrast agents under pressure. J Colloid Interface Sci. 2019;537:123–31.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Wu M, Zhang Y, Zhang J, Su J, Yang C. Molecular imaging of atherosclerotic plaque with lipid nanobubbles as targeted ultrasound contrast agents. Colloids Surfaces B Biointerfaces. 2020;189:110861.

    Article  CAS  PubMed  Google Scholar 

  28. Xenariou S, Griesenbach U, Liang H, Zhu J, Farley R, Somerton L, et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther. 2007;14:768–74.

    Article  CAS  PubMed  Google Scholar 

  29. Sugiyama MG, Mintsopoulos V, Raheel H, Goldenberg NM, Batt JE, Brochard L, et al. Lung ultrasound and microbubbles enhance aminoglycoside efficacy and delivery to the lung in Escherichia coli –induced pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2018;198:404–8.

    Article  PubMed  Google Scholar 

  30. Li J, Xi A, Qiao H, Liu Z. Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro / nanobubbles. Cancer Lett. 2020;475:92–8.

    Article  CAS  PubMed  Google Scholar 

  31. Başpınar Y, Erel-Akbaba G, Kotmakçı M, Akbaba H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int J Pharm. 2019;566:149–56.

    Article  PubMed  CAS  Google Scholar 

  32. Kotmakçı M, Akbaba H, Erel G, Ertan G, Kantarcı G. Improved method for solid lipid nanoparticle preparation based on hot microemulsions: preparation, characterization, cytotoxicity, and Hemocompatibility evaluation. AAPS PharmSciTech. 2017;18:1355–65.

    Article  PubMed  CAS  Google Scholar 

  33. Patil ML, Zhang M, Minko T. Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano. 2011;5:1877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erel G, Kotmakçı M, Akbaba H, Sözer Karadağlı S, Kantarcı AG. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: in vitro and in vivo evaluation of insulin loaded formulation. J Drug Deliv Sci Technol. 2016;36:161–7.

    Article  CAS  Google Scholar 

  35. Lu M, Zhao X, Xing H, Xun Z, Zhu S, Lang L, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm. 2018;550:100–13.

    Article  CAS  PubMed  Google Scholar 

  36. Başpinar Y, Akbaba H, Bayraktar O. Encapsulation of paclitaxel in electrosprayed chitosan nanoparticles. J Res Pharm. 2019;23:886–96.

    Google Scholar 

  37. Bi YZ, Zhang YF, Cui CY, Ren LL, Jiang XY. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7. Int J Nanomedicine. 2016;11:5771–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bulbake U, Kommineni N, Bryszewska M, Ionov M, Khan W. Cationic liposomes for co-delivery of paclitaxel and anti-Plk1 siRNA to achieve enhanced efficacy in breast cancer. J Drug Deliv Sci Technol. 2018;48:253–65.

    Article  CAS  Google Scholar 

  39. Popova P, Notabi MK, Code C, Arnspang EC, Andersen MØ. Co-delivery of siRNA and etoposide to cancer cells using an MDEA esterquat based drug delivery system. Eur J Pharm Sci. 2019;127:142–50.

    Article  CAS  PubMed  Google Scholar 

  40. Lyu H, Wang S, Huang J, Wang B, He Z, Liu B. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett. 2018;420:97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Zhang Y, Tang C, Tian C, Sun Q, Su Z, et al. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis. Int J Pharm. 2017;529:102–15.

    Article  CAS  PubMed  Google Scholar 

  42. Tabatabaei SN, Derbali RM, Yang C, Superstein R, Hamel P, Chain JL, et al. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 2019;298:177–85.

    Article  CAS  PubMed  Google Scholar 

  43. Akbaba H, Erel Akbaba G, Kantarcı AG. Development and evaluation of antisense shRNA-encoding plasmid loaded solid lipid nanoparticles against 5-α reductase activity. J Drug Deliv Sci Technol. 2018;44:270–7.

    Article  CAS  Google Scholar 

  44. Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S, et al. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surfaces B Biointerfaces. 2015;129:39–46.

    Article  CAS  PubMed  Google Scholar 

  45. Mehta SK. Bhawna, Kaur K, Bhasin KK. Micellization behavior of cationic surfactant dodecyldimethylethylammonium bromide (DDAB) in the presence of papain. Colloids Surfaces A Physicochem Eng Asp. 2008;317:32–8.

    Article  CAS  Google Scholar 

  46. Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, et al. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68.

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez-Piñeiro I, Pensado A, Badiola I, Sanchez A. Development and characterisation of chondroitin sulfate- and hyaluronic acid-incorporated sorbitan ester nanoparticles as gene delivery systems. Eur J Pharm Biopharm. 2018;125:85–94.

    Article  PubMed  CAS  Google Scholar 

  48. Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, et al. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano. 2019;13:4028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.

    Article  CAS  PubMed  Google Scholar 

  50. Tai W. Chemical modulation of siRNA lipophilicity for efficient delivery. J Control Release. 2019;307:98–107.

    Article  CAS  PubMed  Google Scholar 

  51. Büyükköroğlu G, Şenel B, Başaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm. 2016;109:174–83.

    Article  PubMed  CAS  Google Scholar 

  52. Yang F, Huang W, Li Y, Liu S, Jin M, Wang Y, et al. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials. 2013;34:5689–99.

    Article  CAS  PubMed  Google Scholar 

  53. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xiong H, Yu S, Zhuang L, Xiong H. Changes of survivin mRNA and protein expression during paclitaxel treatment in breast cancer cells. J Huazhong Univ Sci Technol. 2007;27:65–7.

    Article  CAS  Google Scholar 

  55. Rauch A, Hennig D, Schäfer C, Wirth M, Marx C, Heinzel T, et al. Survivin and YM155: how faithful is the liaison? Biochim Biophys Acta - Rev Cancer. 1845;2014:202–20.

    Google Scholar 

  56. Li Z, Zhang L, Tang C, Yin C. Co-delivery of doxorubicin and Survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy. Pharm Res Pharmaceutical Research. 2017;34:2829–41.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant code 116S213.

The authors would like to thank Ege University, Faculty of Pharmacy, Department of Pharmaceutical Technology (for DLS measurement), Ege University, Pharmaceutical Sciences Research Center (for Varioskan Multiplate Reader), Izmir Katip Celebi University, Central Research Labs (for SEM imaging) and Middle East Technical University, Central Laboratory (for TEM imaging).

Funding

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant code 116S213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Akbaba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not applicable to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaba, H., Erel-Akbaba, G., Kotmakçı, M. et al. Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-siRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells. Pharm Res 37, 165 (2020). https://doi.org/10.1007/s11095-020-02885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02885-x

Key Words

Navigation