Skip to main content

Advertisement

Log in

Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Bevacizumab (BCZ) is a recombinant monoclonal antibody that inhibits the biological activity of the vascular endothelial growth factor, which has an important role in angiogenesis for tumoral growth and progression. In this way, our objective was to develop chitosan-coated lipid-core nanocapsules functionalized with BCZ by an organometallic complex using gold-III.

Methods

The formulation was produced and characterized in relation to physicochemical characteristics. Furthermore, the antitumoral and antiangiogenic activities were evaluated against C6 glioma cell line and chicken embryo chorioallantoic membrane (CAM), respectively.

Results

Final formulation showed nanometric size, narrow polydispersity, positive zeta potential and gold clusters size lower than 2 nm. BCZ in aqueous solution (0.01–0.10 μmol L−1) did not show cytotoxic activity in vitro against C6 glioma cell line; although, MLNC-Au-BCZ showed cytotoxicity with a median inhibition concentration of 30 nmol L−1 of BCZ. Moreover, MLNC-Au-BCZ demonstrated cellular internalization dependent on incubation time and BCZ concentration. BCZ solution did not induce significant apoptosis as compared to MLNC-Au-BCZ within 24 h of treatment. CAM assay evidenced potent antiangiogenic activity for MLNC-Au-BCZ, representing a decrease of 5.6 times in BCZ dose comparing to BCZ solution.

Conclusion

MLNC-Au-BCZ is a promising product for the treatment of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BCZ:

Bevacizumab

CAM:

Chorioallantoic membrane

CCT:

Caprylic/capric triglyceride

DLS:

Dynamic light scattering

NTA:

Nanoparticle tracking analysis

DMEM:

Dulbecco’s Modified Eagle’s Medium

FTIR:

Fourier transform infrared spectroscopy

LNC:

Lipid-core nanocapsules

LNC-Au:

Lipid-core nanocapsules functionalized with gold-III

LNC-Au-Phe:

Lipid-core nanocapsules functionalized with gold-III and phenylalanine

MLNC:

Chitosan-coated lipid-core nanocapsules

MLNC-Au:

Chitosan-coated lipid-core nanocapsules functionalized with gold-III

MLNC-Au-BCZ:

Chitosan-coated lipid-core nanocapsules functionalized with gold-III and bevacizumab

MLNC-Au-Phe:

Chitosan-coated lipid-core nanocapsules functionalized with gold-III and phenylalanine

MLNCf-Au-BCZ:

Fluorescent chitosan-coated lipid-core nanocapsules functionalized with gold-III and bevacizumab

P80:

Polysorbate 80

PCL:

Poly(ε-caprolactone)

PDI:

Polydispersity index

SL:

Soybean lecithin

SM:

Sorbitan monostearate

TEM:

Transmission electron microscopy

VEGF:

Vascular endothelial growth factor

References

  1. Fiel LA, Rebêlo LM, Santiago TM, Adorne MD, Guterres SS, Sousa JS, et al. Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter. 2011;7:7240–7.

    CAS  Google Scholar 

  2. Bender EA, Adorne MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR. Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1–2):271–9.

    CAS  PubMed  Google Scholar 

  3. Bender EA, Cavalcante MF, Adorne MDA, Colomé LM, Guterres SS, Abdalla DSP, Pohlmann A.R. New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules. Pharm Res 2014;31(11):2975–2298.

  4. Mayer FQ, Adorne MD, Bender EA, Carvalho TG, Dilda AC, Beck RCR, et al. Laronidase-functionalized multiple-wall lipid-core nanocapsules: promising formulation for a more effective treatment of mucopolysaccharidosis type I. Pharm Res. 2014;32(3):941–54.

    PubMed  Google Scholar 

  5. Oliveira CP, Prado WA, Lavayen V, Büttenbender SL, Beckenkamp A, Martins BM, et al. Bromelain-functionalized multiple-wall lipid-core nanocapsules: formulation, chemical structure and antiproliferative effect against human breast cancer cells (MCF-7). Pharm Res. 2017;34(2):438–52.

    CAS  PubMed  Google Scholar 

  6. Antonow MB, Franco C, Prado W, Beckenkamp A, Silveira GP, Buffon A, et al. Arginylglycylaspartic acid-surface-functionalized doxorubicin-loaded lipid-core nanocapsules as a strategy to target alpha(v) beta(3) integrin expressed on tumor cells. Nanomaterials (Basel). 2018;8(1):2.

    Google Scholar 

  7. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    PubMed  Google Scholar 

  8. Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-VEGF adjuvant therapy in cancer: challenges and rational. Trends Mol Med. 2010;16(3):122–32.

    CAS  PubMed  Google Scholar 

  9. Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther. 2016;164:204–25.

    CAS  PubMed  Google Scholar 

  10. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    CAS  PubMed  Google Scholar 

  11. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23(12):H18–40.

    CAS  PubMed  Google Scholar 

  12. Brastianos PK, Batchelor TT. Vascular endothelial growth factor inhibitors in malignant gliomas. Target Oncol. 2010;5(3):167–74.

    PubMed  Google Scholar 

  13. Balyasnikova IV, Ferguson SD, Sengupta S, Han Y, Lesniak MS. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010;5(3):e9750.

    PubMed  PubMed Central  Google Scholar 

  14. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    CAS  PubMed  Google Scholar 

  15. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12(6):713–8.

    CAS  PubMed  Google Scholar 

  16. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.

    CAS  PubMed  Google Scholar 

  17. Summers J, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist. 2010;15(1):104–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–8.

    CAS  PubMed  Google Scholar 

  19. Lim ZZJ, Li J-EJ, Ng C-T, Yung L-YL, Bay B-H. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials. 2012;33(4):1180–9.

    CAS  PubMed  Google Scholar 

  21. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–54.

    CAS  PubMed  Google Scholar 

  22. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 2010;62(3):346–61.

    CAS  PubMed  Google Scholar 

  23. Liang H, Tian H, Deng M, Chen X. Gold nanoparticles for cancer theranostics. Chin J Chem. 2015;33:1001–10.

    CAS  Google Scholar 

  24. Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 2016;14(1):195–202.

    CAS  Google Scholar 

  25. Pavlovich E, Volkova N, Yakymchuk E, Perepelitsyna O, Sydorenko M, Goltsev A. In vitro study of influence of au nanoparticles on HT29 and SPEV cell lines. Nanoscale Res Lett. 2017;12(1):494.

    PubMed  PubMed Central  Google Scholar 

  26. Poletto FS, Fiel LA, Lopes MV, Schaab G, Gomes AMO, Guterres SS, et al. Fluorescent-labeled poly(ε-caprolactone) lipid-core nanocapsules: synthesis, physicochemical properties and macrophage uptake. J Colloid Sci Biotechnol. 2012;1:89–98.

    CAS  Google Scholar 

  27. McKenzie B, Kay G, Matthews KH, Knott RM, Cairns D. The hen's egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: quantification using Photoshop® and ImageJ. Int J Pharm. 2015;490(1–2):1–8.

    CAS  PubMed  Google Scholar 

  28. Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem. 2007;79(11):4215–21.

    CAS  PubMed  Google Scholar 

  29. Pretzer LA, Nguyen QX, Wong MS. Controlled growth of sub-10 nm gold nanoparticles using carbon monoxide reductant. J Phys Chem C. 2010;114(49):1226–33.

    Google Scholar 

  30. Dimzon IKD, Knepper TP. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol. 2015;72:939–45.

    CAS  PubMed  Google Scholar 

  31. Tsai D-H, Davila-Morris M, Delrio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance Fourier transform infrared spectroscopy. Langmuir. 2011;27(15):9302–13.

    CAS  PubMed  Google Scholar 

  32. Cé R, Marchi JG, Bergamo VZ, Fuentefria AM, Lavayen V, Guterres SS, et al. Chitosan-coated dapsone-loaded lipid-core nanocapsules: growth inhibition of clinical isolates, multidrug-resistant Staphylococcusaureus and Aspergillus ssp. Colloids Surf A Physicochem Eng Asp. 2016;511:153–61.

    Google Scholar 

  33. Shukla SK, Mishra AK, Arotiba OA, Mamba BB. Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol. 2013;59:46–58.

    CAS  PubMed  Google Scholar 

  34. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    CAS  PubMed  Google Scholar 

  35. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target. 2013;21(10):904–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    CAS  PubMed  Google Scholar 

  37. Ivanov MR, Bednar HR, Haes AJ. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis. ACS Nano. 2009;3(2):386–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Delong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl. 2010;3:53–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zarabi MF, Arshadi N, Farhangi A, Akbarzadeh A. Preparation and characterization of gold nanoparticles with amino acids, examination of their stability. Indian J Clin Biochem. 2014;29(3):306–14.

    CAS  PubMed  Google Scholar 

  40. Bulcão RP, Freitas FA, Venturini CG, Dallegrave E, Durgante J, Göethel G, et al. Acute and subchronic toxicity evaluation of poly(ɛ-caprolactone) lipid-core nanocapsules in rats. Toxicol Sci. 2013;132(1):162–76.

    PubMed  Google Scholar 

  41. Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015;574(2):193–203.

    CAS  PubMed  Google Scholar 

  42. Fiel LA, Contri RV, Bica JF, Figueiró F, Battastini AMO, Guterres SS, et al. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies. Nanoscale Res Lett. 2014;9(1):233.

    PubMed  PubMed Central  Google Scholar 

  43. Antonow MB, Asbahr ACC, Raddatz P, Beckenkamp A, Buffon A, Guterres SS, et al. Liquid formulation containing doxorubicin-loaded lipid-core nanocapsules: cytotoxicity in human breast cancer cell line and in vitro uptake mechanism. Mater Sci Eng C. 2017;76:374–82.

    CAS  Google Scholar 

  44. Drewes CC, Alves AC, Hebeda CB, Copetti I, Sandri S, Uchiyama MK, et al. Role of poly(ε-caprolactone) lipid-core nanocapsules on melanoma-neutrophil crosstalk. Int J Nanomedicine. 2017;12:7153–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Färkkilã A, Pihlajoki M, Tauriala H, Bützow R, Leminen A, Unkila-Kallio L, et al. Serum vascular endothelial growth factor a (VEGF) is elevated in patients with ovarian granulosa cell tumor (GCT), and VEGF inhibition by bevacizumab induces apoptosis in GCT in vitro. J Clin Endocrinol Metab. 2011;96(12):E1973–81.

    PubMed  Google Scholar 

  46. Wang L-L, Hu R-C, Dai A-G, Tan S-X. Bevacizumab induces A549 cell apoptosis through the mechanism of endoplasmic reticulum stress in vitro. Int J Clin Exp Pathol. 2015;8(5):5291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Paquet P, Pierard GE. Toxic epidermal necrolysis: revisiting the tentative link between early apoptosis and late necrosis (review). Int J Mol Med. 2007;19(1):3–10.

    CAS  PubMed  Google Scholar 

  48. Hughes KJ, Chambers KT, Meares GP, Corbett JA. Nitric oxides mediates a shift from early necrosis to late apoptosis in cytokine-treated β-cells that is associated with irreversible DNA damage. Am J Physiol Endocrinol Metab. 2009;297(5):E1187–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:1–14.

    CAS  Google Scholar 

  50. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hartung T, Sabbioni E. Alternative in vitro assays in nanomaterial toxicology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(6):545–73.

    CAS  PubMed  Google Scholar 

  52. Chen Z, Zhang L, Yu J, Chen L, Zhou B. Identification of resveratrol derivative 3,3′,4,4′,5,5′-hexamethoxy-trans-stilbene as a novel pro-angiogenic small-molecule compound. Eur J Pharmacol. 2016;791:185–94.

    CAS  PubMed  Google Scholar 

  53. Ferreira NN, Ferreira LMB, Miranda-Gonçalves V, Reis RM, Seraphim TV, Borges JC, et al. Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. Eur J Pharm Biopharm. 2017;119:271–82.

    CAS  PubMed  Google Scholar 

  54. Steffens L, Wenger A, Stark GB, Finkenzeller G. In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med. 2009;13(9b):3380–6.

    PubMed  Google Scholar 

  55. Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014;17(4):779–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang W, Arai F, Kawahara T. Egg-in-cube: design and fabrication of a novel artificial eggshell with functionalized surface. PLoS One. 2015;10(3):e0118624.

    PubMed  PubMed Central  Google Scholar 

  57. Kucinska M, Murias M, Nowak-Sliwinska P. Beyond mouse cancer models: three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutat Res. 2017;773:242–62.

    CAS  PubMed  Google Scholar 

  58. Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012;13(8):9959–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu M, Scanlon CS, Banerjee R, Russo N, Inglehart RC, Willis AL, et al. The histone methyltransferase EZH2 mediates tumor progression on the chick chorioallantoic membrane assay, a novel model of head and neck squamous cell carcinoma. Transl Oncol. 2013;6(3):273–81.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Maria Palmira Daflon Gremião (Universidade Estadual Paulista em Araraquara, UNESP) for the Avastin® sample; Professor Sergio Luiz Vieira and Thiago Luiz Noetzold (Aviário de Ensino e Pesquisa do Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, UFRGS) for the eggs supply; and the Brazilian Agencies (CAPES, CNPq and FAPERGS). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, finance code 001), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS: 17/2551-0001002-7; PRONEX FAPERGS-CNPq 16/2551-0000467-6) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Research grant 305301/2014-4 and INCT-Nanofarma grant 465687/2014-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aline de Cristo Soares Alves or Adriana Raffin Pohlmann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cristo Soares Alves, A., Lavayen, V., Figueiró, F. et al. Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharm Res 37, 91 (2020). https://doi.org/10.1007/s11095-020-02804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02804-0

Key Words

Navigation