Skip to main content

Advertisement

Log in

Folate Conjugated Double Liposomes Bearing Prednisolone and Methotrexate for Targeting Rheumatoid Arthritis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This investigation was aimed to explore the targeting potential of folate conjugated double liposomes (fDLs) bearing combination of synergistic drugs (Prednisolone and Methotrexate) for effective management of the rheumatoid arthritis (RA).

Methods

To overcome the drawbacks of monotherapy, a combination of prednisolone (PRD) (an anti-inflammatory agent) and methotrexate (MTX) (a disease modifying anti-rheumatoid agent, DMARDs) was chosen for dual targeting approach. fDLs were prepared in two steps i.e. development of inner liposomes (ILs) using thin film casting method followed by encapsulation of ILs within folate conjugated outer liposomes (double liposomes; fDLs). Developed liposomes were characterized for various physicochemical parameters and in vivo performance.

Results

fDLs were prepared using FA-PEG-4000-NH-DSPE conjugate. These double liposomes were having 429.3 ± 3.6 nm in size with 0.109 PDI, 8.01 ± 0.3 mV zeta potential (ζ) and 66.7 ± 3.9% and 45.3 ± 1.7% entrapments of PRD and MTX, respectively. After 24 h, the concentrations of PRD in blood were observed to be 8.66 ± 3.11 (ILs) and 15.13 ± 0.81% (DLs) while concentration of MTX were found to be 10.89 ± 0.69 and 2.34 ± 3.15% when given as ILs and fDLs, respectively. The concentration of both drugs in inflamed joint was observed to be higher than that in the non-inflamed joints.

Conclusions

The folate conjugated double liposomes possess superior targeting efficiency than conjugated and unconjugated single liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CIA:

Collagen-induced arthritis

CHOL:

Cholesterol

DCC:

Dicyclohexylcarbodiimide

DMARDs:

Disease Modifying Anti-Rheumatoid Drugs

DMSO:

Dimethyl sulfoxide

DSPC:

1, 2-Distearoyl-sn-glycero-3-phosphocholine

DSPE:

1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine

ER:

Erythrosine

FA:

Folic acid

fDLs:

Folate Conjugated Double Liposomes

FR:

Folate Receptor

hr./h:

Hour/Hours

HVD:

Half-value duration

ILs:

Inner Liposomes

MRT:

Mean Residence Time

MTX:

Methotrexate

NHS :

N-Hydroxysuccinimide

PBS:

Phosphate buffered saline

PRD:

Prednisolone

RA:

Rheumatoid Arthritis

RBF:

Round Bottom Flask

SA :

Stearylamine

References

  1. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41:778–99.

    Article  CAS  PubMed  Google Scholar 

  2. Silman AJ, Hochberg MC. Epidemiology of the rheumatic diseases: Oxford University Press2001.

  3. Scott D, Shipley M, Dawson A, Edwards S, Symmons D, Woolf A. The clinical management of rheumatoid arthritis and osteoarthritis: strategies for improving clinical effectiveness. Br J Rheumatol. 1998;37:546–54.

    Article  CAS  PubMed  Google Scholar 

  4. Wolfe F, Hawley D. The longterm outcomes of rheumatoid arthritis. Work J Rheumatol. 1998;25:2108–17.

    CAS  PubMed  Google Scholar 

  5. Yelin E, Callahan LF. The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthritis Rheum. 1995;38:1351–62.

    Article  CAS  PubMed  Google Scholar 

  6. Yelin E. The costs of rheumatoid arthritis: absolute, incremental, and marginal estimates. J Rheumatology Supplement. 1996;44:47–51.

    CAS  Google Scholar 

  7. Bloom BS. Direct medical costs of disease and gastrointestinal side effects during treatment for arthritis. Am J Med. 1988;84:20–4.

    Article  CAS  PubMed  Google Scholar 

  8. Greeneand JM, Winickoff RN. Cost-conscious prescribing of nonsteroidal anti-inflammatory drugs for adults with arthritis: a review and suggestions. Arch Intern Med. 1992;152:1995–2002.

    Article  Google Scholar 

  9. Salter DN, Scott KJ, Slade H, Andrews P. The preparation and properties of folate-binding protein from cow's milk. Biochem J. 1981;193:469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Selhub J, Ahmad O, Rosenberg IH. Preparation and use of affinity columns with bovine milk folate-binding protein (FBP) covalently linked to sepharose 4B. Methods Enzymol. 1980;66:686–90.

    Article  CAS  PubMed  Google Scholar 

  11. Kamen BA, Smith AK, Anderson R. The folate receptor works in tandem with a probenecid-sensitive carrier in MA104 cells in vitro. J Clin Invest. 1991;87:1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turek JJ, Leamon CP, Low PS. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J Cell Sci. 1993;106:423–30.

    Article  CAS  PubMed  Google Scholar 

  13. C. Leamon and P. Low. Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells. Biochem J 291:855–860 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  14. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci. 1991;88:5572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antony AC. The biological chemistry of folate receptors. Blood. 1992;79:2807–20.

    Article  CAS  PubMed  Google Scholar 

  16. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73:2432–43.

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy MD, Jallad KN, Lu J, Low PS, Ben-Amotz D. Evaluation of folate conjugate uptake and transport by the choroid plexus of rat. Pharm Res. 2003;20:714–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shen F, Ross J, Wang X, Ratnam M. Identification of a novel folate receptor, a truncated receptor, and receptor type. Beta. In hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry. 1994;33:1209–15.

    Article  CAS  PubMed  Google Scholar 

  19. Nakashima-Matsushita N, Homma T, Yu S, Matsuda T, Sunahara N, Nakamura T, et al. Selective expression of folate receptor β and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1999;42:1609–16.

    Article  CAS  PubMed  Google Scholar 

  20. Jain A, Kumari R, Tiwari A, Verma A, Tripathi A, Shrivastava A, et al. Nanocarrier based advances in drug delivery to tumor: an overview. Curr Drug Targets. 2018.

  21. Jain A, Jain SK. Chapter 9 - application potential of engineered liposomes in tumor targeting A2 - Grumezescu, Alexandru Mihai. In: Multifunctional Systems for Combined Delivery, biosensing and diagnostics, Elsevier2017. p. 171–91.

    Chapter  Google Scholar 

  22. Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Jain SK. Dual drug delivery using “smart” liposomes for triggered release of anticancer agents. J Nanopart Res. 2013;15(1772).

  23. Jain A, Jain SK. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev Ind Pharm. 2016;42:136–49.

    Article  CAS  PubMed  Google Scholar 

  24. Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Mol Med. 2018.

  25. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13:896–901.

    Article  CAS  PubMed  Google Scholar 

  26. Iwanaga K, Ono S, Narioka K, Kakemi M, Morimoto K, Yamashita S, et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transit of insulin. J Pharm Sci. 1999;88:248–52.

    Article  CAS  PubMed  Google Scholar 

  27. Freund O. Biodistribution and gastrointestinal drug delivery of new lipidic multilamellar vesicles. Drug Deliv. 2001;8:239–44.

    Article  CAS  PubMed  Google Scholar 

  28. Desormeaux A, Bergeron MG. Liposomes as drug delivery system: a strategic approach for the treatment of HIV infection. J Drug Target. 1998;6:1–15.

    Article  CAS  PubMed  Google Scholar 

  29. van Slooten ML, Storm G, Zoephel A, Kupcu Z, Boerman O, Crommelin DJ, et al. Liposomes containing interferon-gamma as adjuvant in tumor cell vaccines. Pharm Res. 2000;17:42–8.

    Article  PubMed  Google Scholar 

  30. A. Jain and S. Jain. Ligand-mediated drug-targeted liposomes, Liposomal Delivery Systems: Advances and Challenges. Future Medicine, UK, 2016, pp. 144–158.

  31. Ogue S, Takahashi Y, Onishi H, Machida Y. Preparation of double liposomes and their efficiency as an oral vaccine carrier. Biol Pharm Bull. 2006;29:1223–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jain A, Jain SK. Colon targeted liposomal systems (CTLS): Theranostic potential. Curr Mol Med. 2015;15:621–33.

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Turker MS, Chi EY, Sela S, Martin GM. Preparation of multivesicular liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1983;728:339–48.

    Article  CAS  Google Scholar 

  34. Talsma H, Jousma H, Nicolay K, Crommelin D. Multilamellar or multivesicular vesicles? Int J Pharm. 1987;37:171–3.

    Article  CAS  Google Scholar 

  35. Walker SA, Kennedy MT, Zasadzinski JA. Encapsulation of bilayer vesicles by self-assembly. Nature. 1997;387:61.

    Article  CAS  PubMed  Google Scholar 

  36. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.

    Article  CAS  Google Scholar 

  37. Katayama K, Kato Y, Onishi H, Nagai T, Machida Y. Double liposomes: hypoglycemic effects of liposomal insulin on normal rats. Drug Dev Ind Pharm. 2003;29:725–31.

    Article  CAS  PubMed  Google Scholar 

  38. Yamabe K, Kato Y, Onishi H, Machida Y. In vitro characteristics of liposomes and double liposomes prepared using a novel glass beads method. J Control Release. 2003;90:71–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233:134–44.

    Article  PubMed  Google Scholar 

  40. Szoka F Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75:4194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fry DW, White JC, Goldman ID. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978;90:809–15.

    Article  CAS  PubMed  Google Scholar 

  42. Sartori T, Murakami FS, Cruz AP, de Campos AM. Development and validation of a fast RP-HPLC method for determination of methotrexate entrapment efficiency in polymeric nanocapsules. J Chromatogr Sci. 2008;46:505–9.

    Article  CAS  PubMed  Google Scholar 

  43. Loo J-K, Butterfield A-G, Moffatt J, Jordan N. Analysis of prednisolone in plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1977;143:275–80.

    Article  CAS  Google Scholar 

  44. Dangi R, Hurkat P, Jain A, Shilpi S, Jain A, Gulbake A, et al. Targeting liver cancer via ASGP receptor using 5-FU-loaded surface-modified PLGA nanoparticles. J Microencapsul. 2014;31:479–87.

    Article  CAS  PubMed  Google Scholar 

  45. Bishnoi M, Jain A, Hurkat P, Jain SK. Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. J Drug Target. 2014:1–8.

  46. P. Wooley, A. Dillon, and H.S. Luthra. Genetic control of type II collagen-induced arthritis in rat: factors influencing disease susceptibility and evidence for multiple MHC-associated gene control, Transplant Proc, Vol. 15, Elsevier USA1983, pp. 180–185.

  47. Liang X, Wang H, Jiang X, Chang J. Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method. J Nanopart Res. 2010;12:1723–32.

    Article  CAS  Google Scholar 

  48. Huffman DH, Wan SH, Azarnoff DL, Hoogstraten B. Pharmacokinetics of methotrexate. Clin Pharmacol Ther. 1973;14:572–9.

    Article  CAS  PubMed  Google Scholar 

  49. Freyand BM, Frey FJ. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19:126–46.

    Article  Google Scholar 

  50. Vogt M, Derendorf H, Krämer J, Junginger H, Midha K, Shah V, et al. Biowaiver monographs for immediate release solid oral dosage forms: prednisolone. J Pharm Sci. 2007;96:27–37.

    Article  CAS  PubMed  Google Scholar 

  51. Sułkowska A, Maciążek M, Rownicka J, Bojko B, Pentak D, Sułkowski W. Effect of temperature on the methotrexate–BSA interaction: spectroscopic study. J Mol Struct. 2007;834:162–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We are highly thankful for financial support obtained from AICTE Fellowship to Mr. Amit Verma. Authors report no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Jain, A., Tiwari, A. et al. Folate Conjugated Double Liposomes Bearing Prednisolone and Methotrexate for Targeting Rheumatoid Arthritis. Pharm Res 36, 123 (2019). https://doi.org/10.1007/s11095-019-2653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2653-0

Key Words

Navigation