Skip to main content

Advertisement

Log in

Oligo(Lactic Acid)8-Rapamycin Prodrug-Loaded Poly(Ethylene Glycol)-block-Poly(Lactic Acid) Micelles for Injection

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To prepare an oligo(lactic acid)8-rapamycin prodrug (o(LA)8-RAP)-loaded poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) micelle for injection and characterize its compatibility and performance versus a RAP-loaded PEG-b-PLA micelle for injection in vitro and in vivo.

Methods

Monodisperse o(LA)8 was coupled on RAP at the C-40 via DCC/DMAP chemistry, and conversion of o(LA)8-RAP prodrug into RAP was characterized in vitro. Physicochemical properties of o(LA)8-RAP- and RAP-loaded PEG-b-PLA micelles and their antitumor efficacies in a syngeneic 4 T1 breast tumor model were compared.

Results

Synthesis of o(LA)8-RAP prodrug was confirmed by 1H NMR and mass spectroscopy. The o(LA)8-RAP prodrug underwent conversion in PBS and rat plasma by backbiting and esterase-mediated cleavage, respectively. O(LA)8-RAP-loaded PEG-b-PLA micelles increased water solubility of RAP equivalent to 3.3 mg/ml with no signs of precipitation. Further, o(LA)8-RAP was released more slowly than RAP from PEG-b-PLA micelles. With added physical stability, o(LA)8-RAP-loaded PEG-b-PLA micelles significantly inhibited tumor growth relative to RAP-loaded PEG-b-PLA micelles in 4 T1 breast tumor-bearing mice without signs of acute toxicity.

Conclusions

An o(LA)8-RAP-loaded PEG-b-PLA micelle for injection is more stable than a RAP-loaded PEG-b-PLA micelle for injection, and o(LA)8-RAP converts into RAP rapidly in rat plasma (t1/2 = 1 h), resulting in antitumor efficacy in a syngeneic 4 T1 breast tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

Bn:

Benzyl

CH2Cl2 :

Methylene chloride

DCC:

1,3-dicyclohexylcarbodiimide

DMAP:

4-dimethylaminopyridine

EtOAc:

Ethyl acetate

HF/Pyr:

Hydrogen fluoride/pyridine

mTOR:

Mammalian target of rapamycin

Na2SO4 :

Sodium sulphate

NaHCO3 :

Sodium bicarbonate

O(LA)n :

Oligo(lactic acid)n

O(LA)n-RAP:

Oligo(lactic acid)n-rapamycin

PBS:

Phosphate buffered saline

Pd/C:

Palladium on carbon

PEG-b-PLA:

Poly(ethylene glycol)-block-poly(lactic acid)

RAP:

Rapamycin

Sn(Oct)2 :

Tin(II)-ethylhexanoate

TES:

Triethylsilyl ether

THF:

Tetrahydrofuran

TLC:

Thin layer chromatography

References

  1. Zoncu R, Efeyan A, Sabatini DM. MTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  2. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–10.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng Y, Jiang Y. mTOR inhibitors at a glance. Mol Cell Pharmacol. 2015;7(2):15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin T, Leung C, Nguyen K, Figlin RA. Mammalian target of rapamycin (mTOR) inhibitors in solid tumours. Cinical Pharm. 2016;8(3):1–23.

    Google Scholar 

  5. Forrest ML, Won CY, Malick AW, Kwon GS. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. J Control Release. 2006;110(2):370–7.

    Article  CAS  PubMed  Google Scholar 

  6. Yatscoff RW, Wang P, Chan K, Hicks D, Zimmerman J. Rapamycin: distribution, pharmacokinetics, and therapeutic range investigations. Ther Drug Monit. 1995;17:666–71.

    Article  CAS  PubMed  Google Scholar 

  7. Hartford CM, Ratain MJ. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther. 2007;82(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  8. Rini BI. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res. 2008;14(5):1286–90.

    Article  CAS  PubMed  Google Scholar 

  9. Iacovelli R, Santoni M, Verzoni E, Grassi P, Testa I, De Braud F, et al. Everolimus and temsirolimus are not the same second-line in metastatic renal cell carcinoma. A systematic review and meta-analysis of literature data. Clin Genitourin Cancer. 2015;13(2):137–41.

    Article  PubMed  Google Scholar 

  10. Soefje SA, Karnad A, Brenner AJ. Common toxicities of mammalian target of rapamycin inhibitors. Target Oncol. 2011;6(2):125–9.

    Article  PubMed  Google Scholar 

  11. Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004;22(12):2336–47.

    Article  CAS  PubMed  Google Scholar 

  12. Yáñez JA, Forrest ML, Ohgami Y, Kwon GS, Davies NM. Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(ε- caprolactone) micelles of rapamycin. Cancer Chemother Pharmacol. 2008;61(1):133–44.

    Article  PubMed  Google Scholar 

  13. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:1–15.

    Article  Google Scholar 

  14. Houdaihed L, Evans JC, Allen C. Overcoming the road blocks: advancement of block copolymer micelles for cancer therapy in the clinic. Mol Pharm. 2017;14(8):2503–17.

    Article  CAS  PubMed  Google Scholar 

  15. Shin DH, Tam YT, Kwon GS. Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng. 2016;10(3):348–59.

    Article  CAS  Google Scholar 

  16. Cho H, Gao J, Kwon GS. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J Control Release. 2016;240:191–201.

    Article  CAS  PubMed  Google Scholar 

  17. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437(7059):640–7.

    Article  CAS  PubMed  Google Scholar 

  18. Riley T, Stolnik S, Heald CR, Xiong CD, Garnett MC, Illum L, et al. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir. 2001;17(11):3168–74.

    Article  CAS  Google Scholar 

  19. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53–65.

    Article  CAS  Google Scholar 

  20. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118(14):6844–92.

    Article  CAS  PubMed  Google Scholar 

  21. Tam YT, Gao J, Kwon GS. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: loading, release, and backbiting conversion for anticancer activity. J Am Chem Soc. 2016;138(28):8674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tam YT, Huang C, Poellmann M, Kwon GS. Stereocomplex prodrugs of oligo(lactic acid)n-gemcitabine in poly(ethylene glycol)- block-poly(d, l -lactic acid) micelles for improved physical stability and enhanced antitumor efficacy. ACS Nano. 2018;12(7):7406–14.

    Article  CAS  PubMed  Google Scholar 

  23. De Jong SJ, Van Dijk-Wolthuis WNE, Kettenes-Van Den Bosch JJ, PJW S, Hennink WE. Monodisperse enantiomeric lactic acid oligomers: preparation, characterization, and stereocomplex formation. Macromolecules. 1998;31(19):6397–402.

    Article  Google Scholar 

  24. Takizawa K, Nulwala H, Hu J, Yoshinaga K, Hawker CJ. Molecularly defined (L)-lactic acid oligomers and polymers: synthesis and characterization. J Poly Sci. 2008;46:5977–90.

    Article  CAS  Google Scholar 

  25. Kaihara S, Matsumura S, Mikos AG, Fisher JP. Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc. 2007;2(11):2667–71.

    Article  Google Scholar 

  26. Van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE. Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. Polymer. 2004;45(20):6779–87.

    Article  Google Scholar 

  27. Wang H, Zheng X, Cai Z, Yu O, Zheng S, Zhu T. Synthesis and evaluation of an injectable everolimus prodrug. Bioorganic Med Chem Lett. 2017;27(5):1175–8.

    Article  CAS  Google Scholar 

  28. Tai W, Chen Z, Barve A, Peng Z, Cheng K. A novel rapamycin-polymer conjugate based on a new poly(ethylene glycol) multiblock copolymer. Pharm Res. 2014;31(3):706–19.

    Article  CAS  PubMed  Google Scholar 

  29. Woo HN, Chung HK, Ju EJ, Jung J, Kang H-W, Lee S-W, et al. Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomedicine. 2012;7:2197–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng LH, Zheng XS. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin. 2015;36(10):1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95(6):1177–95.

    Article  CAS  PubMed  Google Scholar 

  32. Tam YT, Shin DH, Chen KE, Kwon GS. Poly(ethylene glycol)-block-poly(D,L-lactic acid) micelles containing oligo (lactic acid)8-paclitaxel prodrug: in vivo conversion and antitumor efficacy. J Control Release. 2019;298:186–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Additional information

Guest Editor: Joshua Reineke

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, Y.T., Repp, L., Ma, ZX. et al. Oligo(Lactic Acid)8-Rapamycin Prodrug-Loaded Poly(Ethylene Glycol)-block-Poly(Lactic Acid) Micelles for Injection. Pharm Res 36, 70 (2019). https://doi.org/10.1007/s11095-019-2600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2600-0

KEY WORDS

Navigation