Skip to main content

Advertisement

Log in

pH-Promoted Release of a Novel Anti-Tumour Peptide by “Stealth” Liposomes: Effect of Nanocarriers on the Drug Activity in Cis-Platinum Resistant Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the potential effects of PEGylated pH-sensitive liposomes on the intracellular activity of a new peptide recently characterized as a novel inhibitor of the human thymidylate synthase (hTS) over-expressed in many drug-resistant human cancer cell lines.

Methods

Peptide-loaded pH-sensitive PEGylated (PpHL) and non-PEGylated liposomes (nPpHL) were carefully characterized and delivered to cis-platinum resistant ovarian cancer C13* cells; the influence of the PpHL on the drug intracellular activity was investigated by the Western Blot analysis of proteins involved in the pathway affected by hTS inhibition.

Results

Although PpHL and nPpHL showed different sizes, surface hydrophilicities and serum stabilities, both carriers entrapped the drug efficiently and stably demonstrating a pH dependent release; moreover, the different behavior against J774 macrophage cells confirmed the ability of PEGylation in protecting liposomes from the reticuloendothelial system. Comparable effects were instead observed against C13* cells and biochemical data by immunoblot analysis indicated that PEGylated pH-sensitive liposomes do not modify the proteomic profile of the cells, fully preserving the activity of the biomolecule.

Conclusion

PpHL can be considered as efficient delivery systems for the new promising anti-cancer peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

[D-Gln4]LR:

New synthesized octapeptide (amminoacid sequence: LSCQLYQR) with inverted chirality at position 4 (corresponding to the amino acid glutamine) (LSCqLYQR)

DHFR:

Dihydrofolate reductase

EPR:

Enhanced permeation and retention

HSP 90-alpha:

Heat shock protein (HSP90AA1)

hTS:

Human thymidylate synthase

nPpHL:

Non-PEGylated peptide-loaded pH-sensitive liposomes

PBS:

Phosphate buffer solution

PEG:

Poly-ethylene-glycol

PpHL:

PEGylated peptide-loaded pH-sensitive liposomes

RES:

Reticuloendothelial system

TRAP1:

Tumour Necrosis Factor Receptor Associated Protein 1

References

  1. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90:667–80.

    Article  CAS  PubMed  Google Scholar 

  2. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  CAS  PubMed  Google Scholar 

  3. Scherphof GL, Dijkstra J, Spanjer HH, Derksen JTP, Uptake RFH. Intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in Vitroa. Ann N Y Acad Sci. 1985;446:368–84.

    Article  CAS  PubMed  Google Scholar 

  4. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  5. Abe K, Higashi K, Watabe K, Kobayashi A, Limwikrant W, Yamamoto K, et al. Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces. Colloids Surf A Physicochem Eng Asp. 2015;474:63–70.

    Article  CAS  Google Scholar 

  6. Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJM, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano. 2012;6:5648–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gabizon AA. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Long-Circ Drug Deliv Syst. 1995;16:285–94.

    CAS  Google Scholar 

  8. Xia Y, Tian J, Chen X. Effect of surface properties on liposomal siRNA delivery. Biomaterials. 2016;79:56–68.

    Article  CAS  PubMed  Google Scholar 

  9. Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36:892–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sacchetti F, D’Arca D, Genovese F, Pacifico S, Maretti E, Hanuskova M, et al. Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones? Drug Dev Ind Pharm. 2017;43:465–73.

    Article  CAS  PubMed  Google Scholar 

  11. Cardinale D, Guaitoli G, Tondi D, Luciani R, Henrich S, Salo-Ahen OMH, et al. Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. Proc Natl Acad Sci U S A. 2011;108:E542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelà M, Saxena P, Luciani R, Santucci M, Ferrari S, Marverti G, et al. Optimization of peptides that target human thymidylate synthase to inhibit ovarian Cancer cell growth. J Med Chem. 2014;57:1355–67.

    Article  CAS  PubMed  Google Scholar 

  13. Genovese F, Gualandi A, Taddia L, Marverti G, Pirondi S, Marraccini C, et al. Mass spectrometric/Bioinformatic identification of a protein subset that characterizes the cellular activity of anticancer peptides. J Proteome Res. 2014;13:5250–61.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Z, Al Zaki A, Hui JZ, Tsourkas A. Simultaneous quantification of tumor uptake for targeted and nontargeted liposomes and their encapsulated contents by ICPMS. Anal Chem. 2012;84:7578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry (Mosc). 1993;32:889–99.

    Article  CAS  Google Scholar 

  16. Doktorovova S, Shegokar R, Martins-Lopes P, Silva AM, Lopes CM, Müller RH, et al. Modified rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). Eur J Pharm Sci. 2012;45:606–12.

    Article  CAS  PubMed  Google Scholar 

  17. Sacchetti F, Marraccini C, D’Arca D, Pelà M, Pinetti D, Maretti E, et al. Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery. Colloids Surf B: Biointerfaces. 2015;136:346–54.

    Article  CAS  PubMed  Google Scholar 

  18. DiSaia PJ, Sinkovics JG, Rutledge FN, Smith JP. Cell-mediated immunity to human malignant cells. A brief review and further studies with two gynecologic tumors Am J Obstet Gynecol. 1972;114:979–89.

    CAS  PubMed  Google Scholar 

  19. Andrews PA, Murphy MP, Howell SB. Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion. Cancer Res. 1985;45:6250–3.

    CAS  PubMed  Google Scholar 

  20. Marverti G, Ligabue A, Paglietti G, Corona P, Piras S, Vitale G, et al. Collateral sensitivity to novel thymidylate synthase inhibitors correlates with folate cycle enzymes impairment in cisplatin-resistant human ovarian cancer cells. Eur J Pharmacol. 2009;615:17–26.

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  22. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005;135:117–29.

    Article  CAS  PubMed  Google Scholar 

  23. Allen C, Dos Santos N, Gallagher R, Chiu GNC, Shu Y, Li WM, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep. 2002;22:225–50.

    Article  CAS  PubMed  Google Scholar 

  24. Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry (Mosc). 1998;37:12875–83.

    Article  CAS  Google Scholar 

  25. Martina M-S, Nicolas V, Wilhelm C, Ménager C, Barratt G, Lesieur S. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages. Biomaterials. 2007;28:4143–53.

    Article  CAS  PubMed  Google Scholar 

  26. Yang C, Liu HZ, Fu ZX, Lu WD. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol. 2011;11:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ponterini G, Martello A, Pavesi G, Lauriola A, Luciani R, Santucci M, et al. Intracellular quantitative detection of human thymidylate synthase engagement with an unconventional inhibitor using tetracysteine-diarsenical-probe technology. 2016;6:27198.

  29. Taddia L, D’Arca D, Ferrari S, Marraccini C, Severi L, Ponterini G, et al. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: novel strategies to overcome cancer chemoresistance. Drug Resist Updat. 2015;23:20–54.

    Article  PubMed  Google Scholar 

  30. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article  CAS  PubMed  Google Scholar 

  31. de Carvalho Maroni L, de Oliveira Silveira AC, Leite EA, Melo MM, de Carvalho Ribeiro AF, Cassali GD, et al. Antitumor effectiveness and toxicity of cisplatin-loaded long-circulating and pH-sensitive liposomes against Ehrlich ascitic tumor. Exp Biol Med Maywood NJ. 2012;237:973–84.

    Article  CAS  Google Scholar 

  32. Israelachvili JN. Intermolecular and Surface forces; ch. 17. 2nd Edition. London: Academic Press; 1991.

  33. Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine. 2012;7:4185–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA, Trubetskoy VS, Herron JN, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994;1195:11–20.

    Article  CAS  PubMed  Google Scholar 

  35. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105:14265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  37. Kharazian B, Hadipour NL, Ejtehadi MR. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int J Biochem Cell Biol. 2016;75:162–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Leo.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, F., Marverti, G., D’Arca, D. et al. pH-Promoted Release of a Novel Anti-Tumour Peptide by “Stealth” Liposomes: Effect of Nanocarriers on the Drug Activity in Cis-Platinum Resistant Cancer Cells. Pharm Res 35, 206 (2018). https://doi.org/10.1007/s11095-018-2489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2489-z

KEY Words

Navigation