Skip to main content
Log in

Influence of Low-Molecular-Weight Excipients on the Phase Behavior of PVPVA64 Amorphous Solid Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved by the preparation of amorphous solid dispersions (ASDs) where the API is dissolved in polymeric excipients. Desired properties of such ASDs like storage stability, dissolution behavior, and processability can be optimized by additional excipients. In this work, the influence of so-called low-molecular-weight excipients (LMWEs) on the phase behavior of ASDs was investigated.

Method

Binary ASDs of an amorphous API, naproxen (NAP) or acetaminophen (APAP), embedded in poly-(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) were chosen as reference systems. Polyethylene glycol 1500 (PEG1500), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS1000), propylene glycol monocaprylate type II (Capryol™ 90), and propylene glycol monolaurate type I (Lauroglycol™ FCC) were used as LMWEs. The API solubility in the excipients and the glass-transition temperature of the ASDs were modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Kwei equation, respectively, and compared to corresponding experimental data.

Results

The API solubility curves in ternary systems with 90/10 wt%/wt% PVPVA64/LMWE ratios were very close to those in pure PVPVA64. However, the glass-transition temperatures of API/PVPVA64/LMWE ASDs were much lower than those of API/PVPVA64 ASDs. These effects were determined experimentally and agreed with the predictions using the PC-SAFT and Kwei models.

Conclusion

The impact of the LMWEs on the thermodynamic stability of the ASDs is quite small while the kinetic stability is significantly decreased even by small LMWE amounts. PC-SAFT and the Kwei equation are suitable tools for predicting the influence of LMWEs on the ASD phase behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APAP:

Acetaminophen

API:

Active pharmaceutical ingredient

ARD:

Average relative deviation

ASD:

Amorphous solid dispersion

DSC:

Differential scanning calorimetry

HPMC:

Hydroxypropyl methylcellulose

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

LMWE:

Low-molecular-weight excipient

NAP:

Naproxen

PC-SAFT:

Perturbed-Chain Statistical Associating Fluid Theory

PEG1500:

Polyethylene glycol 1500

PVP:

Poly(vinylpyrrolidone)

PVPVA64:

Poly(vinylpyrrolidone-co-vinyl acetate) (VA64)

SLE:

Solid-liquid equilibrium

TPGS1000:

D-α-tocopherol polyethylene glycol 1000 succinate

\( \varDelta {\mathrm{c}}_{\mathrm{p},0,\mathrm{API}}^{\mathrm{SL}} \) :

Difference in the solid and liquid heat capacities of the pure API (J/(molK))

\( \varDelta {\mathrm{h}}_{0,\mathrm{API}}^{\mathrm{SL}} \) :

Enthalpy of fusion of the pure API (J/mol)

\( {\mathrm{T}}_{0,\mathrm{API}}^{\mathrm{SL}} \) :

Melting temperature of the pure API (K)

a :

Helmholtz energy (J)

K :

Gordon-Taylor binary parameter

kB :

Boltzmann constant

kij :

PC-SAFT binary interaction parameter

M :

Molar mass (g/mol)

mseg :

Segment number

Nassoc :

Number of association sites

qij :

Kwei binary interaction parameter

R :

Universal gas constant (8.1345 J/(molK))

T :

Temperature (K)

Tg :

Glass-transition temperature (K)

u/kB :

Dispersion-energy parameter (K)

w :

Content (wt%)

x :

Mole fraction

γ :

Activity coefficient

εAiBi/kB :

Association-energy parameter (K)

κAiBi :

Association-volume parameter

ρ :

Density (g/cm3)

σ :

Segment diameter (Å)

0 :

Pure component

API :

Active pharmaceutical ingredient

calcd :

Calculated

exptl :

Experimental

hc :

Hard chain

L :

Liquid phase

LMWE :

Low-molecular-weight excipient

Ai, Bi :

Association sites A and B of molecule i

assoc.:

Association

disp:

Dispersion

i, j:

Component indices

res:

Residual

seg:

Segment

SL:

Solid-liquid

REFERENCES

  1. Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  CAS  PubMed  Google Scholar 

  2. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  3. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.

    Article  CAS  PubMed  Google Scholar 

  4. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  5. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.

    Article  CAS  PubMed  Google Scholar 

  6. Paus R, Ji Y, Vahle L, Sadowski G. Predicting the solubility advantage of amorphous pharmaceuticals: a novel thermodynamic approach. Mol Pharm. 2015;12(8):2823–33.

    Article  CAS  PubMed  Google Scholar 

  7. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  8. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11(7):2662–79.

    Article  CAS  Google Scholar 

  9. Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44.

    Article  CAS  PubMed  Google Scholar 

  10. Kyeremateng SO, Pudlas M, Woehrle GH. A fast and reliable empirical approach for estimating solubility of crystalline drugs in polymers for hot melt extrusion formulations. J Pharm Sci. 2014;103(9):2847–58.

    Article  CAS  PubMed  Google Scholar 

  11. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  13. Janssens S, Nagels S, Armas HND, D’Autry W, van Schepdael A, van den Mooter G. Formulation and characterization of ternary solid dispersions made up of itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur J Pharm Biopharm. 2008;69(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  14. Prudic A, Ji Y, Sadowski G. Thermodynamic phase behavior of API/polymer solid dispersions. Mol Pharm. 2014;11(7):2294–304.

    Article  CAS  PubMed  Google Scholar 

  15. Tao J, Sun Y, Zhang GGZ, Yu L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res. 2009;26(4):855–64.

    Article  CAS  PubMed  Google Scholar 

  16. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    Article  CAS  PubMed  Google Scholar 

  17. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Long-term physical stability of PVP- and PVPVA-amorphous solid dispersions. Mol Pharm. 2017;14(1):157–71.

    Article  CAS  PubMed  Google Scholar 

  18. Theil F, Anantharaman S, Kyeremateng SO, van Lishaut H, Dreis-Kuhne SH, Rosenberg J, et al. Frozen in time: kinetically stabilized amorphous solid dispersions of nifedipine stable after a quarter century of storage. Mol Pharm. 2017;14(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  19. Prudic A, Ji Y, Luebbert C, Sadowski G. Influence of humidity on the phase behavior of API/polymer formulations. Eur J Pharm Biopharm. 2015;94:352–62.

    Article  CAS  PubMed  Google Scholar 

  20. Mura P, Faucci MT, Manderioli A, Bramanti G, Parrini P. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev Ind Pharm. 1999;25(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Michoel A, van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm. 2005;303(1–2):54–61.

    Article  CAS  PubMed  Google Scholar 

  22. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.

    PubMed  PubMed Central  Google Scholar 

  23. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2012;65(1):315–499.

    Article  Google Scholar 

  24. Park S-H, Choi H-K. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321(1–2):35–41.

    Article  CAS  PubMed  Google Scholar 

  25. Serajuddin AT, Mufson D, Bernstein DF, Sheen P-C, Augustine MA. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J Pharm Sci. 1988;77(5):414–7.

    Article  CAS  PubMed  Google Scholar 

  26. Repka MA, McGinity JW. Influence of vitamin E TPGS on the properties of hydrophilic films produced by hot-melt extrusion. Int J Pharm. 2000;202(1–2):63–70.

    Article  CAS  PubMed  Google Scholar 

  27. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  28. Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. Acta Pharm Sin B. 1984;22(6):307–13.

    CAS  Google Scholar 

  29. Gross J, Sadowski G. Perturbed-shain SAFT. An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244–60.

    Article  CAS  Google Scholar 

  30. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J Appl Chem. 1952;2(9):493–500.

    Article  CAS  Google Scholar 

  31. Kalogeras IM. A novel approach for analyzing glass-transition temperature vs. composition patterns: application to pharmaceutical compound+polymer systems. Eur J Pharm Sci. 2011;42(5):470–83.

    Article  CAS  PubMed  Google Scholar 

  32. Prudic A, Kleetz T, Korf M, Ji Y, Sadowski G. Influence of copolymer composition on the phase behavior of solid dispersions. Mol Pharm. 2014;11(11):4189–98.

    Article  CAS  PubMed  Google Scholar 

  33. Prausnitz JM, Lichtenthaler RN, Azevedo EGD. Molecular thermodynamics of fluid-phase equilibria. 3rd ed. Upper Saddle River, N.J: Prentice-Hall; 1999.

    Google Scholar 

  34. Paus R, Ji Y, Braak F, Sadowski G. Dissolution of crystalline pharmaceuticals: Experimental investigation and thermodynamic modeling. Ind Eng Chem Res. 2015;54(2):731–42.

    Article  CAS  Google Scholar 

  35. Granberg RA, Rasmuson ÅC. Solubility of paracetamol in pure solvents. J Chem Eng Data. 1999;44(6):1391–5.

    Article  CAS  Google Scholar 

  36. Gross J, Sadowski G. Modeling polymer systems using the perturbed-chain statistical associating fluid theory equation of state. Ind Eng Chem Res. 2002;41(5):1084–93.

    Article  CAS  Google Scholar 

  37. Ruether F, Sadowski G. Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. J Pharm Sci. 2009;98(11):4205–15.

    Article  CAS  PubMed  Google Scholar 

  38. Eastman Chemical Company. Eastman vitamin E TPGS NF - applications and properties. October 2005.

  39. Stoychev I, Galy J, Fournel B, Lacroix-Desmazes P, Kleiner M, Sadowski G. Modeling the phase behavior of PEO−PPO−PEO surfactants in carbon dioxide using the PC-SAFT equation of state: application to dry decontamination of solid substrates †. J Chem Eng Data. 2009;54(5):1551–9.

    Article  CAS  Google Scholar 

  40. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Six K, Verreck G, Peeters J, Brewster M, van den Mooter G. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci. 2004;93(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  42. Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys. 1962;37(5):1003–7.

    Article  CAS  Google Scholar 

  43. Paudel A, van Humbeeck J, van den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm. 2010;7(4):1133–48.

    Article  CAS  PubMed  Google Scholar 

  44. Nair R, Nyamweya N, Gönen S, Martinez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225(1–2):83–96.

    Article  CAS  PubMed  Google Scholar 

  45. Polyethylene glycol [MAK Value Documentation, 1998], in: The MAK-Collection for OccupationalHealth and Safety, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; 2002. pp. 248–70.

  46. Godovski Y, Slonimskii GL, Garbar NM. Effect of molecular weight on the crystallization, melting, glass-transition and morphology in the ethylene glycol-polyethylene glycol series. Polym Sci (USSR). 1973;15(4):914–31.

    Article  Google Scholar 

  47. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  48. Mohan R, Lorenz H, Myerson AS. Solubility measurement using differential scanning calorimetry. Ind Eng Chem Res. 2002;41(19):4854–62.

    Article  CAS  Google Scholar 

  49. Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was funded by AbbVie. AbbVie participated in the study design, research, data collection, analysis and interpretation of data, as well as writing, reviewing, and approving the publication. S.K., M.D., and K.L. are AbbVie employees and may own AbbVie stock/options. G.S. is an employee at the Department for Biochemical and Chemical Engineering of the TU Dortmund University and has no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel O. Kyeremateng or Gabriele Sadowski.

Electronic supplementary material

ESM 1

(DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmkemper, K., Kyeremateng, S.O., Degenhardt, M. et al. Influence of Low-Molecular-Weight Excipients on the Phase Behavior of PVPVA64 Amorphous Solid Dispersions. Pharm Res 35, 25 (2018). https://doi.org/10.1007/s11095-017-2316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-017-2316-y

Key words

Navigation