Skip to main content
Log in

In vitro Phase I- and Phase II-Drug Metabolism in The Liver of Juvenile and Adult Göttingen Minipigs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In view of pediatric drug development, juvenile animal studies are gaining importance. However, data on drug metabolizing capacities of juvenile animals are scarce, especially in non-rodent species. Therefore, we aimed to characterize the in vitro biotransformation of four human CYP450 substrates and one UGT substrate in the livers of developing Göttingen minipigs.

Methods

Liver microsomes from late fetal, Day 1, Day 3, Day 7, Day 28, and adult male and female Göttingen minipigs were incubated with a cocktail of CYP450 substrates, including phenacetin, tolbutamide, dextromethorphan, and midazolam. The latter are probe substrates for human CYP1A2, CYP2C9, CYP2D6, and CYP3A4, respectively. In addition, the UGT multienzyme substrate (from the UGT-GloTM assay), which is glucuronidated by several human UGT1A and UGT2B enzymes, was also incubated with the porcine liver microsomes.

Results

For all tested substrates, drug metabolism significantly rose postnatally. At one month of age, 60.5 and 75.4% of adult activities were observed for acetaminophen and dextrorphan formations, respectively, while 35.4 and 43.2% of adult activities were present for 4-OH-tolbutamide and 1’-OH-midazolam formations. Biotransformation of phenacetin was significantly higher in 28-day-old and adult females compared with males.

Conclusions

Maturation of metabolizing capacities occurred postnatally, as described in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CYP450:

Cytochrome P450 enzymes

DGA:

Days of gestational age

HLM:

Human liver microsomes

KPO4 :

Potassium phosphate

LLOQ:

Lower limit of quantification

MLM:

Minipig liver microsomes

mol/min/mg MP:

Moles of metabolite formed per minute per milligram of microsomal protein

MP:

Microsomal protein

PBS:

Phosphate buffered saline

PND:

Postnatal day

RLU:

Relative light unit

RT:

Room temperature

TBS:

Tris buffered saline

UDPGA:

Uridine-5’-diphospho-glucuronic acid

UGT:

Uridine diphosphate glucuronosyltransferase

Vmax :

Maximal velocity

References

  1. Carleer J, Karres J. Juvenile animal studies and pediatric drug development: a European regulatory perspective. Birth Defects Res Part B, Dev Reproduct Toxicol. 2011;92(4):254–60.

    CAS  Google Scholar 

  2. Baldrick P. Juvenile animal testing in drug development--is it useful? Regul Toxicol Pharmacol. 2010;57(2-3):291–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.

    Article  CAS  PubMed  Google Scholar 

  4. Hayes AW. Principles and methods of toxicology. 4th ed. London: Taylor & Francis; 2001.

    Google Scholar 

  5. Puccinelli E, Gervasi PG, Longo V. Xenobiotic metabolizing cytochrome P450 in pig, a promising animal model. Curr Drug Metab. 2011;12(6):507–25.

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Liu Y, Zhang JW, Wei H, Yang L. Characterization of hepatic drug-metabolizing activities of Bama miniature pigs (Sus scrofa domestica): comparison with human enzyme analogs. Comp Med. 2006;56(4):286–90.

    CAS  PubMed  Google Scholar 

  7. Hu SX. Impact of age on hepatic cytochrome P450 of domestic male Camborough-29 pigs. J Vet Pharmacol Ther. 2014.

  8. Achour B, Barber J, Rostami-Hodjegan A. Cytochrome p450 pig liver pie: determination of individual cytochrome p450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectroscopy. Drug Metab Dispos. 2011;39(11):2130–4.

    Article  CAS  PubMed  Google Scholar 

  9. Messina A, Chirulli V, Gervasi PG, Longo V. Purification, molecular cloning, heterologous expression and characterization of pig CYP1A2. Xenobiotica. 2008;38(12):1453–70.

    Article  CAS  PubMed  Google Scholar 

  10. Skaanild MT, Friis C. Analyses of CYP2C in porcine microsomes. Basic Clin Pharmacol Toxicol. 2008;103(5):487–92.

    Article  CAS  PubMed  Google Scholar 

  11. Anzenbacher P, Soucek P, Anzenbacherova E, Gut I, Hruby K, Svoboda Z, et al. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. comparison with human liver samples. Drug Metab Dispos. 1998;26(1):56–9.

    CAS  PubMed  Google Scholar 

  12. Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacol. 2001;1:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wester MR, Lasker JM, Johnson EF, Raucy JL. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab Dispos. 2000;28(3):354–9.

    CAS  PubMed  Google Scholar 

  14. Skaanild MT, Friis C. Cytochrome P450 sex differences in minipigs and conventional pigs. Pharmacol Toxicol. 1999;85(4):174–80.

    Article  CAS  PubMed  Google Scholar 

  15. Skaanild MT, Friis C. Is cytochrome P450 CYP2D activity present in pig liver? Pharmacol Toxicol. 2002;91(4):198–203.

    Article  CAS  PubMed  Google Scholar 

  16. Jurima-Romet M, Casley WL, Leblanc CA, Nowakowska M. Evidence for the catalysis of dextromethorphan O-demethylation by a CYP2D6-like enzyme in pig liver. Toxicol In Vitro : Int J Publ Assoc BIBRA. 2000;14(3):253–63.

    Article  CAS  Google Scholar 

  17. Sakuma T, Shimojima T, Miwa K, Kamataki T. Cloning CYP2D21 and CYP3A22 cDNAs from liver of miniature pigs. Drug Metab Dispos. 2004;32(4):376–8.

    Article  CAS  PubMed  Google Scholar 

  18. Murayama N, Kaneko N, Horiuchi K, Ohyama K, Shimizu M, Ito K, et al. Cytochrome P450-dependent drug oxidation activity of liver microsomes from Microminipigs, a possible new animal model for humans in non-clinical studies. Drug Metab Pharmacokinetics. 2009;24(4):404–8.

    Article  CAS  Google Scholar 

  19. Miyake Y, Mayumi K, Jinno H, Tanaka-Kagawa T, Narimatsu S, Hanioka N. cDNA cloning and functional analysis of minipig uridine diphosphate-glucuronosyltransferase 1A1. Biol Pharm Bull. 2013;36(3):452–61.

    Article  CAS  PubMed  Google Scholar 

  20. Higashi E, Ando A, Iwano S, Murayama N, Yamazaki H, Miyamoto Y. Hepatic microsomal UDP-glucuronosyltransferase (UGT) activities in the microminipig. Biopharm Drug Dispos. 2014;35(6):313–20.

    Article  CAS  PubMed  Google Scholar 

  21. Heckel T, Schmucki R, Berrera M, Ringshandl S, Badi L, Steiner G, et al. Functional analysis and transcriptional output of the Gottingen minipig genome. BMC Genomics. 2015;16(1):932.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van Peer E, De Bock L, Boussery K, Van Bocxlaer J, Casteleyn C, Van Ginneken C, et al. Age-related differences in CYP3A abundance and activity in the liver of the Gottingen Minipig. Basic Clin Pharmacol Toxicol. 2015;117(5):350–7.

    Article  PubMed  Google Scholar 

  23. Fisher MB, Campanale K, Ackermann BL, VandenBranden M, Wrighton SA. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos. 2000;28(5):560–6.

    CAS  PubMed  Google Scholar 

  24. Cazeneuve C, Pons G, Rey E, Treluyer JM, Cresteil T, Thiroux G, et al. Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults. Br J Clin Pharmacol. 1994;37(5):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem. 1998;251(3):893–8.

    Article  CAS  PubMed  Google Scholar 

  26. Skaanild MT, Friis C. Characterization of the P450 system in Gottingen minipigs. Pharmacol Toxicol. 1997;80 Suppl 2:28–33.

    Article  CAS  PubMed  Google Scholar 

  27. Kojima M, Sekimoto M, Degawa M. A novel gender-related difference in the constitutive expression of hepatic cytochrome P4501A subfamily enzymes in Meishan pigs. Biochem Pharmacol. 2008;75(5):1076–82.

    Article  CAS  PubMed  Google Scholar 

  28. Rasmussen MK, Zamaratskaia G, Ekstrand B. Gender-related differences in cytochrome P450 in porcine liver--implication for activity, expression and inhibition by testicular steroids. Reprod Domestic Anim = Zuchthygiene. 2011;46(4):616–23.

    Article  CAS  Google Scholar 

  29. Ou-Yang DS, Huang SL, Wang W, Xie HG, Xu ZH, Shu Y, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol. 2000;49(2):145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.

    Article  CAS  PubMed  Google Scholar 

  31. Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics. 1997;7(6):441–52.

    Article  CAS  PubMed  Google Scholar 

  32. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74.

    Article  CAS  PubMed  Google Scholar 

  33. Kojima M, Degawa M. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: comparison between Meishan and Landrace pigs. Drug Metab Pharmacokinetics. 2016;31(3):185–92.

    Article  CAS  Google Scholar 

  34. Treluyer JM, Jacqz-Aigrain E, Alvarez F, Cresteil T. Expression of CYP2D6 in developing human liver. Eur J Biochem. 1991;202(2):583–8.

    Article  CAS  PubMed  Google Scholar 

  35. Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008;36(8):1587–93.

    Article  CAS  PubMed  Google Scholar 

  36. Blake MJ, Gaedigk A, Pearce RE, Bomgaars LR, Christensen ML, Stowe C, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–6.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson TN, Thomson M. Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr. 2008;47(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Tompkins LM. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9(7):598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Croom EL, Stevens JC, Hines RN, Wallace AD, Hodgson E. Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol. 2009;78(2):184–90.

    Article  CAS  PubMed  Google Scholar 

  40. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver--evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.

    Article  CAS  PubMed  Google Scholar 

  41. Blanco JG, Harrison PL, Evans WE, Relling MV. Human cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000;28(4):379–82.

    CAS  PubMed  Google Scholar 

  42. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.

    Article  CAS  PubMed  Google Scholar 

  43. Snawder JE, Lipscomb JC. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul Toxicol Pharmacol. 2000;32(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  44. Debinski HS, Lee CS, Danks JA, Mackenzie PI, Desmond PV. Localization of uridine 5'-diphosphate-glucuronosyltransferase in human liver injury. Gastroenterology. 1995;108(5):1464–9.

    Article  CAS  PubMed  Google Scholar 

  45. Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50(2):259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667–86.

    Article  CAS  PubMed  Google Scholar 

  47. Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skaanild MT. Porcine cytochrome P450 and metabolism. Curr Pharm Des. 2006;12(11):1421–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The Applied Veterinary Morphology research group would like to thank Ellegaard Göttingen Minipig A/S for the kind donation of animals. The authors from the University of Antwerp are members of COST Action BM1308 ‘Sharing Advances on Large Animal Models (SALAAM)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Van Cruchten.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

The Ethical Committee of Animal Experimentation from the University of Antwerp (Belgium) approved the protocol and use of the animals and research adhered to the ‘Principles of Laboratory Animal Care’ (NIH publication Nr 85-23, revised in 1985).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Peer, E., Jacobs, F., Snoeys, J. et al. In vitro Phase I- and Phase II-Drug Metabolism in The Liver of Juvenile and Adult Göttingen Minipigs. Pharm Res 34, 750–764 (2017). https://doi.org/10.1007/s11095-017-2101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2101-y

KEY WORDS

Navigation