Skip to main content
Log in

The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths.

Methods

The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media.

Results

Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data.

Conclusions

Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Abbreviations

HPMC:

Hydroxypropyl methylcellulose

MRI:

Magnetic resonance imaging

PEO:

Polyethylene oxide

References

  1. Timmins P, Pygall SR, Melia CD. Hydrophilic matrix tablets for oral controlled release. AAPS advances in pharmaceutical sciences series. New York: Springer; 2014. p. 17–51.

    Google Scholar 

  2. Harland RS, Garzzaniga A, Sangalli ME, Colombo P, Peppas NA. Drug polymer matrix swelling and dissolution. Pharm Res. 1988;5(8):488–94.

    Article  CAS  Google Scholar 

  3. Colombo P, Bettini R, Massimo G, Catellani PL, Santi P, Peppas NA. Drug diffusion front movement is important in drug-release control from swellable matrix tablets. J Pharm Sci. 1995;84(8):991–7.

    Article  CAS  Google Scholar 

  4. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behavior, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3:198–204.

    Article  CAS  Google Scholar 

  5. Korner A, Larsson A, Andersson A, Piculell L. Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities. J Pharm Sci. 2010;99(3):1225–38.

    Article  Google Scholar 

  6. Modi SA, Gaikwad PD, Bankar VH, Pawar SP. Sustained release drug delivery system: a review. Int J Pharma Res Dev Online. 2011;2.

  7. Leskinen JT, Hakulinen MA, Kuosmanen M, Ketolainen J, Abrahmsén-Alami S, Lappalainen R. Monitoring of swelling of hydrophilic polymer matrix tablets by ultrasound techniques. Int J Pharm. 2011;404(1-2):142–7.

    Article  CAS  Google Scholar 

  8. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int J Pharm. 1990;66(1-3):233–42.

    Article  CAS  Google Scholar 

  9. Williams HD, Ward R, Hardy IJ, Melia CD. The effect of sucrose and salts in combination on the drug release behaviour of an HPMC matrix. Eur J Pharm Biopharm. 2010;76(3):433–6.

    Article  CAS  Google Scholar 

  10. Williams HD, Ward R, Hardy IJ, Melia CD. The extended release properties of HPMC matrices in the presence of dietary sugars. J Control Release. 2009;138(3):251–9.

    Article  CAS  Google Scholar 

  11. Herbert L, Lordi NG. Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix. J Pharm Sci. 1966;55(8):840–3.

    Article  Google Scholar 

  12. Bajwa GS, Hoebler K, Sammon C, Timmins P, Melia CD. Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci. 2006;95(10):2145–57.

    Article  CAS  Google Scholar 

  13. RajabiSiahboomi AR, Bowtell R, Mansfield P, Melia CD. Structure and behavior in hydrophilic matrix sustained release dosage forms .4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res. 1996;13(3):376–80.

    Article  CAS  Google Scholar 

  14. Royce AE. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms. 1993: USA.

  15. Kim CJ. Drug release from compressed hydrophilic polyox® WSR tablets. J Pharm Sci. 1995;84(3):303–6.

    Article  CAS  Google Scholar 

  16. Kim CJ. Effects of drug solubility, drug loading, and polymer molecular weight on drug release from polyox (R) tablets. Drug Dev Ind Pharm. 1998;24(7):645–51.

    Article  CAS  Google Scholar 

  17. Maggi L, Bruni R, Conte U. High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms. Int J Pharm. 2000;195(1–2):229–38.

    Article  CAS  Google Scholar 

  18. Turner S, Hite M, Fassihi R. Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin. Drug Dev Ind Pharm. 2004;30(8):797–807.

    Article  CAS  Google Scholar 

  19. Wray PS, Clarke GS, Kazarian SG. Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci. 2013;48(4–5):748–57.

    Article  CAS  Google Scholar 

  20. Jayan A. Investigating the drug release mechanisms of mixed HPMC/PEO hydrophilic matrices, in University of Nottingham 2001, University of Nottingham University of Nottingham.

  21. Gusler G, Mei-Chau P. Optimal polymer mixtures for gastric retentive tablets, U.S. Patent, 2004: USA.

  22. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  23. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2–3):139–57.

    Article  CAS  Google Scholar 

  24. Wong EB. Partially pregelatinized starch as an excipient in HPMC matrices, in school of pharmacy 2009, University of Nottingham University of Nottingham.

  25. Viriden A, Larsson A, Schagerlöf H, Wittgren B. Model drug release from matrix tablets composed of HPMC with different substituent heterogeneity. Int J Pharm. 2010;401(1–2):60–7.

    Article  CAS  Google Scholar 

  26. Chen YY, Hughes LP, Gladden LF, Mantle MD. Quantitative ultra-fast MRI of HPMC swelling and dissolution. J Pharm Sci. 2010;99(8):3462–72.

    Article  CAS  Google Scholar 

  27. Zhang Q, Gladden L, Avalle P, Mantle M. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin in Lescol(R) XL tablets in a USP-IV dissolution cell. J Control Release. 2011;156(3):345–54.

    Article  CAS  Google Scholar 

  28. Shiko G, Gladden LF, Sederman AJ, Connolly PC, Butler JM. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell. J Pharm Sci. 2011;100(3):976–91.

    Article  CAS  Google Scholar 

  29. Colombo P, Bettini R, Santi P, De Ascentiis A, Peppas NA. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J Control Release. 1996;39(2–3):231–7.

    Article  CAS  Google Scholar 

  30. Hino T, Ford JL. Effect of nicotinamide on the properties of aqueous HPMC solutions. Int J Pharm. 2001;226(1–2):53–60.

    Article  CAS  Google Scholar 

  31. Rajabi-Siahboomi AR. Hydroxypropylmethylcellulose in hydrophilic matrix dosage forms, in school of pharmacy. 1993, University of Nottingham: Nottingham.

  32. McCrystal CB, Ford JL, Rajabi-Siahboomi AR. Water distribution studies within cellulose ethers using differential scanning calorimetry. 1. Effect of polymer molecular weight and drug addition. J Pharm Sci. 1999;88(8):792–6.

    Article  CAS  Google Scholar 

  33. McCrystal CB, Ford JL, Rajabi-Siahboomi AR. Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition. J Pharm Sci. 1999;88(8):797–801.

    Article  CAS  Google Scholar 

  34. Liu SQ, Joshi SC, Lam YC. Effects of salts in the hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci. 2008;109(1):363–72.

    Article  CAS  Google Scholar 

  35. Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861–905.

    Article  CAS  Google Scholar 

  36. Florin E, Kjellander R, Eriksson JC. Salt effects on the cloud point of the poly(ethylene oxide) + water-system. J Chem Soc Faraday Trans 1. 1984;80:2889–910.

    Article  CAS  Google Scholar 

  37. Rajabi-Siahboomi AR, Levina M, Farrell TP, Palmer D. The influence of hydro-alcoholic media on drug release. Pharm Technol. 2011;35(7).

  38. Lopes J, Pinto J, Costa P. Compressed matrix core tablet as a quick/slow dual-component delivery system containing ibuprofen. AAPS PharmSciTech. 2007;8(3):E76.

    Article  Google Scholar 

  39. Melia CD, Rajabi-Siahboomi AR, Bowtell RW. Magnetic resonance imaging of controlled release pharmaceutical dosage forms. Pharm Sci Technol Today. 1998;1(1):32–9.

    Article  CAS  Google Scholar 

  40. Missaghi S, Patel P, Farrell TP, Huatan H, Rajabi-Siahboomi AR. Investigation of critical core formulation and process parameters for osmotic pump oral drug delivery. AAPS PharmSciTech. 2014;15(1):149–60.

    Article  CAS  Google Scholar 

  41. Mirza ML, Iqbal J, Aziz H. Sorption of Congo red on cellulose. J Chem Soc Pak. 1996;18(3):233–6.

    Google Scholar 

  42. Williams HD, Ward R, Culy A, Hardy IJ, Melia CD. Designing HPMC matrices with improved resistance to dissolved sugar. Int J Pharm. 2010;401(1–2):51–9.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Yewande Oni from University of Nottingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Mantle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Chen, C., Mantle, M.D. et al. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments. Pharm Res 34, 941–956 (2017). https://doi.org/10.1007/s11095-016-2031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2031-0

KEY WORDS

Navigation