Skip to main content
Log in

Folate-Mediated Targeted Delivery of Combination Chemotherapeutics Loaded Reduced Graphene Oxide for Synergistic Chemo-Photothermal Therapy of Cancers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Larger surface area for drug incorporation and superior optical activity makes reduced graphene oxide (rGO) a suitable drug carrier for combination chemotherapeutics delivery. And folate receptors are potential mediators for cancer targeted delivery. This study mainly aimed to prepare irinotecan (IRI)- and docetaxel (DOC)-loaded, folate (FA)-conjugated rGO (FA-P407-rGO/ID) for synergistic cancer therapy.

Methods

FA-P407-rGO/ID was prepared as aqueous dispersion. Characterization was performed using high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet/visible spectroscopy, fourier transform infrared spectroscopy (FTIR) and drug release. In vitro cellular studies were performed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), fluorescence-activated cell sorting (FACS) and western blot analyses.

Results

Our results revealed successful preparation of stable FA-P407-rGO/ID formulation with enhanced drug release profiles in acidic microenvironment. In vitro cytotoxicity of the formulation on folate receptor-expressing human mammary carcinoma (MCF-7) cells was higher than that when free IRI/DOC combination (ID) was used; such increased cytotoxicity was not observed in folate receptor-negative hepatocellular carcinoma (HepG2) cells. Cellular uptake of FA-P407-rGO/ID in MCF-7 cells was higher than in HepG2 cells. Further, FACS and western blot analysis revealed better apoptotic effects of the formulation in MCF-7 cells than in HepG2 cells, suggesting the important role of folate receptors for targeted chemotherapy delivery to cancer cells. Near infrared irradiation further enhanced the apoptotic effect in cancer cells, resulting from the photothermal effects of rGO.

Conclusions

Hence, FA-P407-rGO/ID can be considered as a potential formulation for folate-targeted chemo-photothermal therapy in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1H-NMR:

Proton nuclear magnetic resonance

AFM:

Atomic force microscopy

CDI:

1,1ʹ-carbonyldiimidazole

DOC:

Docetaxel

FA:

Folic acid

FACS:

Fluorescence-activated cell sorting

FITC:

Fluorescein-5(6)-isothiocyanate

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High performance liquid chromatography

ID:

Irinotecan and docetaxel combination

IRI:

Irinotecan

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

NIR:

Near infrared

P407:

Poloxamer 407

rGO:

Reduced graphene oxide

TEM:

Transmission electron microscopy

References

  1. Zhang Y, Nayak TR, Hong H, Cai W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42:530–47.

    Article  CAS  PubMed  Google Scholar 

  3. Feng L, Wu L, Qu X. New horizons for diagnosis and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25(2):168–86.

  4. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angew Chem Int Ed Engl. 2009;48(26):4785–7.

    Article  CAS  PubMed  Google Scholar 

  5. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shim G, Kim JY, Han J, Chung SW, Lee S, Byun Y, et al. Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. J Control Release. 2014;189:80–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Lee D, Kim J, Kim TI, Kim WJ. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano. 2013;7(8):6735–46.

    Article  CAS  PubMed  Google Scholar 

  9. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011;32(33):8555–61.

    Article  CAS  PubMed  Google Scholar 

  11. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem. 2012;22:13773–81.

    Article  CAS  Google Scholar 

  12. Hu SH, Chen YW, Hung WT, Chen IW, Chen SY. Quantum-dot-tagged reduced graphene oxide nano-composites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater. 2012;24:1748–54.

    Article  CAS  PubMed  Google Scholar 

  13. Kim MG, Shon Y, Lee J, Byun Y, Choi BS, Kim YB, et al. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector. Biomaterials. 2014;35(9):2999–3004.

    Article  CAS  PubMed  Google Scholar 

  14. Miao W, Shim G, Lee S, Choi YS, Oh YK. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials. 2013;34:3402–10.

    Article  CAS  PubMed  Google Scholar 

  15. Kim YK, Kim MH, Min DH. Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun. 2011;47(11):3195–7.

    Article  CAS  Google Scholar 

  16. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem. 2006;16(2):155–8.

    Article  CAS  Google Scholar 

  17. Tang LA, Lee WC, Shi H, Wong EY, Sadovoy A, Gorelik S, et al. Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small. 2012;8(3):423–31.

    Article  CAS  PubMed  Google Scholar 

  18. Min K, Han TH, Kim J, Jung J, Jung C, Hong SM, et al. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. J Colloid Interface Sci. 2012;383(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  19. Thapa RK, Baskaran R, Madheswaran T, Kim JO, Yong CS, Yoo BK. Preparation, characterization, and release study of tacrolimus-loaded liquid crystalline nanoparticles. J Dispers Sci Technol. 2013;34(1):72–7.

    Article  CAS  Google Scholar 

  20. Sepehri N, Rouhani H, Tavassolian F, Montazeri H, Khoshayand MR, Ghahremani MH, et al. SN38 polymeric nanoparticles: in vitro cytotoxicity and in vivo antitumor efficacy in xenograft balb/c model with breast cancer versus irinotecan. Int J Pharm. 2014;47(1–2):485–97.

    Article  Google Scholar 

  21. Wang Z, Zeng X, Ma Y, Liu J, Tang X, Gao Y, et al. Antitumor efficiency of D-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-lactide) nanoparticle-based delivery of docetaxel in mice bearing cervical cancer. J Biomed Nanotechnol. 2014;10(8):1509–19.

    Article  PubMed  Google Scholar 

  22. Zhao S, Tan S, Guo Y, Huang J, Chu M, Liu H, et al. pH-sensitive docetaxel-loaded D-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules. 2013;14(8):2636–46.

    Article  CAS  PubMed  Google Scholar 

  23. Pradhan R, Poudel BK, Ramasamy T, Choi HG, Yong CS, Kim JO. Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies. J Nanosci Nanotechnol. 2013;13(8):5948–56.

    Article  CAS  PubMed  Google Scholar 

  24. Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  25. Badr M, Kopp C, Theison S, Meyer J, Trommer WE. Methotrexate-gelonin conjugate – an inhibitor of MCF-7 cells expressing the dihydrofolate receptor. Biol Chem. 2014;395(12):1461–6.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C, Gao S, Jiang W, Lin S, Du F, Li Z, et al. Targeted minicircle DNA delivery using folate-poly(ethylene glycol)-polyethylenimine as non-viral carrier. Biomaterials. 2010;31(23):6075–86.

    Article  CAS  PubMed  Google Scholar 

  27. Urbiola K, Garcia L, Zalba C, Garrido MJ. Tros de llarduya C. Efficient serum-resistant lipoplexes targeted to the folate receptor. Eur J Pharm Biopharm. 2013;83(3):358–63.

    Article  CAS  PubMed  Google Scholar 

  28. Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, et al. Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics. 2014;4(2):142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO. Graphene oxidewrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces. 2016;143:271–7.

  30. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101–5.

    Article  CAS  PubMed  Google Scholar 

  31. Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL, et al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials. 2009;30(28):5114–24.

    Article  CAS  PubMed  Google Scholar 

  32. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  33. Basiruddin SK, Swain SK. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing. Mater Sci Eng C Mater Biol Appl. 2016;58:103–9.

    Article  CAS  PubMed  Google Scholar 

  34. Eda G, Chhowalla M. Chemically derived graphene oxide: towards large area thin film electronics and optoelectronics. Adv Mater. 2010;22(22):2392–415.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Liu K, Luo Z, Duan Y. Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant. Int J Nanomed. 2015;10:4605–20.

    CAS  Google Scholar 

  36. Chen D, Li L, Guo L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology. 2011;22(32):325601.

    Article  PubMed  Google Scholar 

  37. Swain AK, Bahadur D. Enhanced stability of reduced graphene oxide colloid using cross-linking polymers. J Phys Chem C. 2014;118(18):9450–7.

    Article  CAS  Google Scholar 

  38. Ren J, Fang Z, Yao L, Dahmani FZ, Yin L, Zhou J, et al. A micelle-like structure of poloxamer-methotrexate conjugates as nanocarrier for methotrexate delivery. Int J Pharm. 2015;487(1–2):177–86.

    Article  CAS  PubMed  Google Scholar 

  39. Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release. 2006;114(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Gu W, Xiao N, Ye L, Xu Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomed. 2014;9:1433–42.

    Google Scholar 

  41. Zhang Z, Yao J. Preparation of irinotecan-loaded folate-targeted liposome for targeting delivery and its antitumor activity. AAPS PharmSciTech. 2012;13(3):802–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu P, Meng Q, Sun H, Yin Q, Yu H, Zhang Z, et al. Shrapnel nanoparticles loading docetaxek inhibit metastasis and growth of breast cancer. Biomaterials. 2015;64:10–20.

    Article  CAS  PubMed  Google Scholar 

  43. Tang Y, Czuczman PR, Chung ST, Lewis AL. Preservation of the active lactone form of irinotecan using drug eluting beads for the treatment of colorectal cancer metastases. J Control Release. 2008;127(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  44. Niu J, Wang A, Ke Z, Zheng Z. Glucose transporter and folic acid receptor-mediated Pluronic P105 polmeric micelles loaded with doxorubicin for brain tumor treating. J Drug Target. 2014;22(8):712–23.

    Article  CAS  PubMed  Google Scholar 

  45. Tang W, Su G, Li J, Liao J, Chen S, Huang C, et al. Enhanced anti-colorectal cancer effects of carfilzomib combined with CPT-11 via downregulation of nuclear factor-kB in vitro and in vivo. Int J Oncol. 2014;45(3):995–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Edvardsen H, Brunsvig PF, Solvang H, Tsalenko A, Andersen A, Syvanen AC, et al. SNPs in genes coding for ROS metabolism and signaling in association with docetaxel clearance. Pharmacogenomics J. 2010;10(6):513–23.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01004118, 2015R1A2A2A04004806). This work was also supported by the Medical Research Center Program (2015R1A5A2009124) through the NRF funded by MSIP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Jong Oh Kim.

Electronic supplementary material

Characterizations of FA-P407 conjugate and FA-P407-rGO/ID; cytotoxicity and cellular uptake analysis.

ESM 1

(DOCX 2851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, R.K., Choi, Y., Jeong, JH. et al. Folate-Mediated Targeted Delivery of Combination Chemotherapeutics Loaded Reduced Graphene Oxide for Synergistic Chemo-Photothermal Therapy of Cancers. Pharm Res 33, 2815–2827 (2016). https://doi.org/10.1007/s11095-016-2007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2007-0

KEY WORDS

Navigation