Skip to main content
Log in

Targeting of Micelles and Liposomes Loaded with the Pro-Apoptotic Drug, NCL-240, into NCI/ADR-RES Cells in a 3D Spheroid Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 September 2016

ABSTRACT

Purpose

To develop transferrin (Tf)-targeted delivery systems for the pro-apoptotic drug, NCL-240, and to evaluate the efficacy of this delivery system in ovarian cancer NCI/ADR-RES cells, grown in vitro in a 3D spheroid model.

Methods

Tf-targeted PEG-PE-based micellar and ePC/CHOL-based liposomal delivery systems for NCL-240 were prepared. NCI/ADR-RES cells were used to generate spheroids by a non-adhesive liquid overlay technique. Spheroid growth and development were monitored by size (diameter) analysis and H&E staining. The targeted formulations were compared to untargeted ones in terms of their degree of spheroid association and penetration. A cell viability analysis with NCL-240-loaded micelles and liposomes was performed to assess the effectiveness of Tf-targeting.

Results

Tf-targeted polymeric micelles and Tf-targeted liposomes loaded with NCL-240 were prepared. NCI/ADR-RES cells generated spheroids that demonstrated the presence of a distinct necrotic core along with proliferating cells in the spheroid periphery, partly mimicking in vivo tumors. The Tf-targeted micelles and liposomes had a deeper spheroid penetration as compared to the untargeted delivery systems. Cell viability studies using the spheroid model demonstrated that Tf-mediated targeting markedly improved the cytotoxicity profile of NCL-240.

Conclusion

Transferrin targeting enhanced delivery and effectiveness of micelles and liposomes loaded with NCL-240 against NCI/ADR-RES cancer cells in a 3D spheroid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHEMS:

Cholesterol hemisuccinate

CHOL:

Cholesterol

DM-PIT-1:

N-[(2-hydroxy-5-nitrophenyl)amino]carbonothioyl-3,5-dimethylbenzamide

DOPE:

1,2- dioleoyl-sn-glycero-3-phosphoethanolamine

ePC:

Egg phosphatidylcholine

EPR:

Enhanced permeability and retention

MDR:

Multi-drug resistant

NCL:

National Chemical Laboratory (Pune, India)

PE:

Phosphatidylethanolamine

PEG:

Polyethylene glycol

PH:

Pleckstrin-homology

PI3K:

Phosphatidylinositide 3-kinase

PIP2 :

Phosphatidylinositol-3,4-diphosphate

PIP3 :

Phosphatidylinositol-3,4,5-triphosphate

PKB/Akt:

Protein kinase B

pNP:

p-nitrophenylcarbonyl

PTEN:

Phosphatase and tensin homologous protein

Tf:

Transferrin

REFERENCES

  1. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.

    Article  PubMed  Google Scholar 

  2. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(6):1075–83.

    Article  CAS  Google Scholar 

  3. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A. 2010;107(46):20126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riehle RD, Cornea S, Degterev A, Torchilin V. Micellar formulations of pro-apoptotic DM-PIT-1 analogs and TRAIL in vitro and in vivo. Drug Deliv. 2013;20(2):78–85.

    Article  CAS  PubMed  Google Scholar 

  6. Kommagalla Y, Cornea S, Riehle R, Torchilin V, Degterev A, Ramana CV. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole. Med Chem Commun. 2014;5(9):1359–63.

    Article  CAS  Google Scholar 

  7. Skidan I, Miao B, Thekkedath RV, Dholakia P, Degterev A, Torchilin V. In vitro cytotoxicity of novel pro-apoptotic agent DM-PIT-1 in PEG-PE-based micelles alone and in combination with TRAIL. Drug Deliv. 2009;16(1):45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riehle R, Pattni B, Jhaveri A, Kulkarni A, Thakur G, Degterev A, et al. Combination nanopreparations of a novel proapoptotic drug - NCL-240, TRAIL and siRNA. Pharm Res. 2016;33:1587–01.

  9. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  10. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release: Off J Control Release Soc. 2010;148(2):135–46.

    Article  CAS  Google Scholar 

  11. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    Article  CAS  PubMed  Google Scholar 

  12. Sawant RR, Jhaveri AM, Koshkaryev A, Qureshi F, Torchilin VP. The effect of dual ligand-targeted micelles on the delivery and efficacy of poorly soluble drug for cancer therapy. J Drug Target. 2013;21(7):630–8.

    Article  CAS  PubMed  Google Scholar 

  13. Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 2001;1511(2):397–411.

    Article  CAS  PubMed  Google Scholar 

  14. Mikhail AS, Eetezadi S, Allen C. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere(R). PLoS One. 2013;8(4):e62630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9-10):1172–84.

    Article  CAS  PubMed  Google Scholar 

  16. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5-6):240–9.

    Article  CAS  PubMed  Google Scholar 

  17. Perche F, Patel NR, Torchilin VP. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG-PE micelles in ovarian cancer cell spheroid model. J Control Release: Off J Control Release Soc. 2012;164(1):95–102.

    Article  CAS  Google Scholar 

  18. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release: Off J Control Release Soc. 2012;164(2):192–204.

    Article  CAS  Google Scholar 

  19. Takagi A, Watanabe M, Ishii Y, Morita J, Hirokawa Y, Matsuzaki T, et al. Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features. Anticancer Res. 2007;27(1A):45–53.

    CAS  PubMed  Google Scholar 

  20. Ota H, Miki N. Microtechnology-based three-dimensional spheroid formation. Front Biosci. 2013;5:37–48.

    Article  Google Scholar 

  21. Sarisozen C, Abouzeid AH, Torchilin VP. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm. 2014;88:539–50.

  22. Sawant RR, Torchilin VP. Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example. Methods Mol Biol. 2010;624:131–49.

    Article  CAS  PubMed  Google Scholar 

  23. Reulen SW, Merkx M. Exchange kinetics of protein-functionalized micelles and liposomes studied by Forster resonance energy transfer. Bioconjug Chem. 2010;21(5):860–6.

    Article  CAS  PubMed  Google Scholar 

  24. Patel NR, Rathi A, Mongayt D, Torchilin VP. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm. 2011;416(1):296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4(3):309–24.

    Article  CAS  PubMed  Google Scholar 

  26. Perche F, Torchilin VP. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther. 2012;13(12):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release: Off J Control Release Soc. 2003;91(1-2):97–102.

    Article  CAS  Google Scholar 

  28. Qin M, Lee YE, Ray A, Kopelman R. Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromol Biosci. 2014;14(8):1106–15.

    Article  CAS  PubMed  Google Scholar 

  29. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  PubMed  Google Scholar 

  30. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  31. Desoize B, Gimonet D, Jardiller JC. Cell culture as spheroids: an approach to multicellular resistance. Anticancer Res. 1998;18(6A):4147–58.

    CAS  PubMed  Google Scholar 

  32. Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65(13-14):1748–62.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

NIH/NCI grant U54CA151881 to V.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-016-2034-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data

(DOCX 17 kb)

Supplementary Figure 1

(JPG 98 kb)

Supplementary Figure 2

(JPG 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattni, B.S., Nagelli, S.G., Aryasomayajula, B. et al. Targeting of Micelles and Liposomes Loaded with the Pro-Apoptotic Drug, NCL-240, into NCI/ADR-RES Cells in a 3D Spheroid Model. Pharm Res 33, 2540–2551 (2016). https://doi.org/10.1007/s11095-016-1978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1978-1

KEY WORDS

Navigation