Skip to main content

Advertisement

Log in

Development of Long-Circulating pH-Sensitive Liposomes to Circumvent Gemcitabine Resistance in Pancreatic Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purposes

To develop pH-sensitive liposomes (PSL) containing a high content of gemcitabine; and to investigate whether drug loading (DL) would alter the in vitro and pharmacokinetic properties.

Methods

PSL with a high DL were obtained using a modified small-volume incubation method. The DL effects on drug release rate and in vitro cytotoxicity of PSL were evaluated using MIA PaCa-2 pancreatic cancer cells and their pharmacokinetics investigated in rats.

Results

The highest DL of 4.5 ± 0.1% was achieved for gemcitabine in PSL with 145 ± 5 nm diameter. DL did not alter the in vitro release rate from PSL. The IC50 (48 h) of PSL (DL 0.5 and 4.5%) and non pH-sensitive liposomes (NPSL, DL 4.2%) were 1.1 ± 0.1, 0.7 ± 0.1 and 37.0 ± 7.5 μM, respectively. The PSL resulted in a 4.2-fold increase in its elimination half-life (6.2 h) compared to gemcitabine solution (1.4 h) in rats. No significant difference in pharmacokinetic parameters was observed between the two PSL (DL 0.5 and 4.5%).

Conclusion

The PSL offered advantages over NPSL in restoring the sensitivity of pancreatic cancer cells to gemcitabine without requiring a high DL. DL in the PSL did not alter release rate, cytotoxicity or their long-circulating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC transporters:

ATP-binding cassette transporters

CHEMS:

Cholesterylhemisuccinate

DL:

Drug loading

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

EE:

Entrapment efficiency

EPR:

Enhanced permeability and retention

IC50 :

the drug concentration causing 50% inhibition

MDR:

Multi-drug resistance

NPSL:

Non pH-sensitive liposomes

PC:

Pancreatic cancer

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PSL:

pH-sensitive liposomes

RES:

Reticuloendothelial system

SVI:

Small volume incubation

TEM:

Transmission electron microscopy

TFHE:

Thin-film hydration extrusion

REFERENCES

  1. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications. Existing Potential. 2006;1(3):297–315.

    CAS  Google Scholar 

  2. Yin H, Liao L, Fang J. Enhanced Permeability and Retention (EPR) effect based tumor targeting: the concept, application and prospect. JSM Clin Oncol Res. 2014;2(1):1010.

    Google Scholar 

  3. Hilbig A, Oettle H. Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther. 2008;8(4):511–23.

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Paxton WJ, Lim J, Li Y, Zhang W, Duxfield L, et al. Development of high-content gemcitabine pegylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharm Res. 2014;31(10):2583–92.

    Article  CAS  PubMed  Google Scholar 

  5. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-Sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release. 2005;103(2):405–18.

    Article  CAS  PubMed  Google Scholar 

  6. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6(5):1949–57.

    CAS  PubMed  Google Scholar 

  7. Karanth H, Murthy RS. pH-Sensitive liposomes-principle and application in cancer therapy. J Pharm Pharmacol. 2007;59(4):469–83.

    Article  CAS  PubMed  Google Scholar 

  8. Fattal E, Couvreur P, Dubernet C. “Smart” delivery of antisense oligonucleotides by anionic pH-Sensitive liposomes. Adv Drug Del Rev. 2004;56(7):931–46.

    Article  CAS  Google Scholar 

  9. Vanić Z, Barnert S, Süss R, Schubert R. Fusogenic activity of pegylated pH-Sensitive liposomes. J Liposome Res. 2012;22(2):148–57.

    Article  PubMed  Google Scholar 

  10. Simões S, Slepushkin V, Düzgünes N, de Lima MCP. On the mechanisms of internalization and intracellular delivery mediated by pH-Sensitive liposomes. Biochim Biophys Acta. 2001;1515(1):23–37.

    Article  PubMed  Google Scholar 

  11. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, et al. Effective anti-tumor activity of oxaliplatin encapsulated in Transferrin-PEG-Liposome. Int J Pharm. 2008;346(1–2):143–50.

    Article  CAS  PubMed  Google Scholar 

  12. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(1):66–77.

    Article  CAS  Google Scholar 

  13. Slepushkin V, Simões S, de Lima MC, Düzgüneş N. Sterically stabilized pH-Sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem. 1997;272(4):2382–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hong MS, Lim SJ, Oh YK, Kim CK. pH-Sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J Pharm Pharmacol. 2002;54(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  15. Simões S, Moreira JN, Fonseca C, Düzgüneş N, de Lima MC. On the formulation of pH-Sensitive liposomes with long circulation times. Adv Drug Deliv Rev. 2004;56(7):947–65.

    Article  PubMed  Google Scholar 

  16. Leite EA, Souza CM, Carvalho-Júnior AD, Coelho LG, Lana AM, Cassali GD, et al. Encapsulation of cisplatin in long-circulating and pH-Sensitive liposomes improves its antitumor effect and reduces acute toxicity. Int J Nanomedicine. 2012;7:5259–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mo R, Sun Q, Li N, Zhang C. Intracellular delivery and antitumor effects of pH-Sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials. 2013;34(11):2773–86.

    Article  CAS  PubMed  Google Scholar 

  18. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  19. Manuel H. Pancreatic Cancer. N Engl J Med. 2010;362:1605–17.

    Article  Google Scholar 

  20. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  21. Touroutoglou N, Gravel D, Raber MN, Plunkett W, Abbruzzese JL. Clinical results of a pharmacodynamically-based strategy for higher dosing of gemcitabine in patients with solid tumors. Ann Oncol. 1998;9(9):1003–8.

    Article  CAS  PubMed  Google Scholar 

  22. Storniolo AM, Allerheiligen SR, Pearce HL. Preclinical, pharmacologic, and Phase I studies of gemcitabine. Semin Oncol. 1997;24(2 Suppl 7):S7-2–7.

    Google Scholar 

  23. Kiani A, Köhne CH, Franz T, Passauer J, Haufe T, Gross P, et al. Pharmacokinetics of gemcitabine in a patient with end-stage renal disease: effective clearance of its main metabolite by standard hemodialysis treatment. Cancer Chemother Pharmacol. 2003;51(3):266–70.

    PubMed  Google Scholar 

  24. Kuenen BC, Rosen L, Smit EF, Parson MR, Levi M, Ruijter R, et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and Su5416 in patients with solid tumors. J Clin Oncol. 2002;20(6):1657–67.

    Article  CAS  PubMed  Google Scholar 

  25. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233(2):134–44.

    Article  PubMed  Google Scholar 

  26. Ogawara K, Un K, Minato K, Tanaka K, Higaki K, Kimura T. Determinants for in vivo anti-tumor effects of peg liposomal doxorubicin: importance of vascular permeability within tumors. Int J Pharm. 2008;359(1–2):234–40.

    Article  CAS  PubMed  Google Scholar 

  27. Elzainy AA, Gu X, Simons FE, Simons KJ. Hydroxyzine- and cetirizine-loaded liposomes: effect of duration of thin film hydration, freeze-thawing, and changing buffer pH on encapsulation and stability. Drug Dev Ind Pharm. 2005;31(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  28. Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75(9):4194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang W, Wang G, Falconer JR, Baguley BC, Shaw JP, Liu J, et al. Strategies to maximize liposomal drug loading for a poorly water-soluble anticancer drug. Pharm Res. 2015;32(4):1451–61.

    Article  CAS  PubMed  Google Scholar 

  30. Zhigaltsev IV, Maurer N, Akhong QF, Leone R, Leng E, Wang J, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release. 2005;104(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  31. Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220(1–2):77–83.

    Article  CAS  PubMed  Google Scholar 

  32. Xu H, Paxton JW, Lim J, Li Y, Wu Z. Development of a gradient high performance liquid chromatography assay for simultaneous analysis of hydrophilic gemcitabine andlipophilic curcumin using a central composite design and its application in liposome development. J Pharm Biomed Anal. 2014;98:371–8.

    Article  CAS  PubMed  Google Scholar 

  33. Xu H, Paxton JW, Wu Z. Enhanced pH-Responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharm Res. 2015;32(7):2428–38.

    Article  CAS  PubMed  Google Scholar 

  34. Working PK, Newmanl MS, Huang SK, Mayhew E, Vaage J, Lasicl DD. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in stealth liposomes (Doxil). J Liposome Res. 1994;4:667–87.

    Article  Google Scholar 

  35. Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of Ph-Sensitive liposomes in drug delivery. Drug Deliv. 2014;22(3):231–42.

    Article  PubMed  Google Scholar 

  36. Hafez IM, Cullis PR. Cholesteryl hemisuccinate exhibits PH sensitive polymorphic phase behavior. Biochim Biophys Acta. 2000;1463(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  37. Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, et al. Antitumor activity of Egfr targeted Ph-Sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release. 2009;140(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  38. Graeser R, Bornmann C, Esser N, Ziroli V, Jantscheff P, Unger C, et al. Antimetastatic effects of liposomal gemcitabine and empty liposomes in an orthotopic mouse model of pancreatic cancer. Pancreas. 2009;38(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cosco D, Bulotta A, Ventura M, Celia C, Calimeri T, Perri G, et al. In vivo activity of gemcitabine-loaded pegylated small unilamellar liposomes against pancreatic cancer. Cancer Chemother Pharmacol. 2009;64(5):1009–20.

    Article  CAS  PubMed  Google Scholar 

  40. Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 2005;1745(3):273–86.

    Article  CAS  PubMed  Google Scholar 

  41. Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. Mol Membr Biol. 2010;27(4–6):190–205.

    Article  CAS  PubMed  Google Scholar 

  42. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  43. Fenske DB, Cullis PR. Liposomal Nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  44. Cui J, Li C, Guo W, Li Y, Wang C, Zhang L, et al. Direct comparison of two pegylated liposomal doxorubicin formulations: is AUC predictive for toxicity and efficacy? J Control Release. 2007;118:204–15.

    Article  CAS  PubMed  Google Scholar 

  45. Paolino D, Cosco D, Racanicchi L, Trapasso E, Celia C, Iannone M, et al. Gemcitabine-loaded pegylated unilamellar liposomes vs Gemzar®: biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release. 2010;144:144–50.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The financial support for this study was provided by a Marsden Fund by the Royal Society of New Zealand (Grant number UOA1201) and an Auckland Medical Research Fund (Grant Number 1113026). We also thank Mr Alan Gall from VJU for his technical support with the animal studies. Hongtao Xu also wishes to acknowledge the support of a Doctorial Scholarship provided by The University of Auckland, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimei Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Paxton, J.W. & Wu, Z. Development of Long-Circulating pH-Sensitive Liposomes to Circumvent Gemcitabine Resistance in Pancreatic Cancer Cells. Pharm Res 33, 1628–1637 (2016). https://doi.org/10.1007/s11095-016-1902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1902-8

KEY WORDS

Navigation