Skip to main content

Advertisement

Log in

Liposomes as Delivery System of a Sn(IV) Complex for Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Propose

Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.

Methods

MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.

Results

Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.

Conclusions

The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DMPC:

Dimyristoylphosphatidylcholine

DMPG:

Dimyristoylphosphoglycerol

DSPE-PEG2000:

Distearoylphosphatidylethanolamine-poly(ethyleneglycol) 2000

DSPE-PEG-NHS:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene-glycol)-2000-N-hydroxysuccinimide

EGFR:

Epidermal growth factor receptor

HCT116:

Colorectal carcinoma cells

HepG2:

Hepatocellular carcinoma cells

ICP:

Inductively Coupled Plasma Mass Spectrometry

L:

Empty Liposomes

MG85:

[nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide)

MG85-L:

MG85 incorporated in conventional/non-PEGylated liposomes

MG85-PEG-Rho-L-Cetuxi:

MG85 incorporated in Cetuximab targeted PEGylated liposomes labelled with Rho

MPS:

Mononuclear phagocyte system

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PEG-Rho-L:

PEGylated liposomes labelled with Rho

PEG-Rho–L-Cetuxi:

Cetuximab targeted PEGylated liposomes labelled with Rho

PMA:

phorbol 12-myristate-13 acetate

Rho:

Rhodamine B

Rho-PE:

L-α-phosphoethanolamine-N-(lissamine Rhodamine B sulfonyl)

THP1:

Human monocytic leukemia (THP1) cell line

REFERENCES

  1. Varela-Ramirez M, Costanzo YP, Carrasco KH, Pannell, Aguilera RJ. Cytotoxic effects of two organotin compounds and their mode of inflicting cell death on four mammalian cancer cells. Cell Biol Toxicol. 2011;27:159–68. doi:10.1007/s10565-010-9178-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gielen M. Organotin compounds and their therapeutic potential: a report from the organometallic chemistry department of the free University of Brussels. Appl Organomet Chem. 2002;16:81–494. doi:10.1002/aoc.331.

    Google Scholar 

  3. Hadjikakou SK, Hadjiliadis N. Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev. 2009;253:235–49. doi:10.1016/j.ccr.2007.12.026.

    Article  CAS  Google Scholar 

  4. Pellerito L, Nagy L, Pellerito PM, Szorcsik A. Biological activity studies on organotin(IV)n+ complexes and parent compounds. J Organomet Chem. 2006;691:1733–47. doi:10.1016/j.jorganchem.2005.12.025.

    Article  CAS  Google Scholar 

  5. Mahmudov KT, Guedes da Silva MFC, Kopylovich MN, Fernandes AR, Silva A, Mizar A, et al. Di- and tri-organotin(IV) complexes of arylhydrazones of methylene active compounds and their antiproliferative activity. J Organomet Chem. 2014;760:67–73. doi:10.1016/j.jorganchem.2013.12.019.

    Article  CAS  Google Scholar 

  6. Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H. Potentially bioactive organotin(IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur J Med Chem. 2014;84:343–63. doi:10.1016/j.ejmech.2014.07.028.

    Article  CAS  PubMed  Google Scholar 

  7. Awang N, Kamaludin NF, Hamid A, Mokhtar NW, Rajab NF. Cytotoxicity of triphenyltin(IV) methyl- and ethylisopropyldithiocarbamate compounds in chronic myelogenus leukemia cell line (K-562). Pak J Biol Sci. 2012;15:833–8. doi:10.3923/pjbs.2012.833.838.

    Article  CAS  PubMed  Google Scholar 

  8. Alama A, Tasso B, Novelli F, Sparatore F. Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today. 2009;14:500–8. doi:10.1016/j.drudis.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  9. Gajewska M, Luzyanin KV, MFC G d S, Li Q, Cui J, Pombeiro AJL. Cyclic trinuclear diorganotin(IV) complexes—the first tin compounds bearing oximehydroxamate ligands: synthesis, structural characterization and high in vitro cytotoxicity. Eur J Inorg Chem. 2009;2009:3765–9. doi:10.1002/ejic.200900388.

    Article  Google Scholar 

  10. Tabassum S, Pettinari C. Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem. 2006;691:1761–6. doi:10.1016/j.jorganchem.2005.12.033.

    Article  CAS  Google Scholar 

  11. Gielen M, Biesemans M, Willem R. Organotin compounds: from kinetics to stereochemistry and antitumour activities. Appl Organomet Chem. 2005;19:440–50. doi:10.1002/aoc.771.

    Article  CAS  Google Scholar 

  12. Pettinari C, Marchetti F. In: Tin chemistry: fundamentals, frontiers, and applications. John Wiley & Sons, ch. 4; 2008. p. 454–468. doi:10.1002/9780470758090.

  13. Silva A, Luis D, Santos S, Silva J, Mendo AS, Coito L, et al. Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: a comparative proteomic approach. Drug Metabol Drug Interact. 2013;8:167–76. doi:10.1515/dmdi-2013-0015.

    Google Scholar 

  14. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4:1158–71. doi:10.1158/1940-6207.CAPR-10-0006.

    Article  CAS  Google Scholar 

  15. Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv. 2010;7:225–43. doi:10.1517/17425240903427940.

    Article  CAS  PubMed  Google Scholar 

  16. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9. doi:10.1016/j.tips.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  17. Mangiapia G, D’Errico G, Simeone L, Irace C, Radulescu A, Di Pascale A, et al. Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials. 2012;33:3770–82. doi:10.1016/j.biomaterials.2012.01.057.

    Article  CAS  PubMed  Google Scholar 

  18. Mangiapia G, Vitiello G, Irace C, Santamaria R, Colonna A, Angelico R, et al. Anticancer cationic ruthenium nanovetors: from rational molecular design to cellular uptake and bioactivity. Biomacromolecules. 2013;14:2549–60. doi:10.1021/bm400104b.

    Article  CAS  PubMed  Google Scholar 

  19. Montesarchio D, Mangiapia G, Vitiello G, Musumeci D, Irace C, Santamaria R, et al. A new design for nucleolipid-based Ru(III) complexes as anticancer agents. Dalton Trans. 2013;42:16697–708. doi:10.1039/c3dt52320a.

    Article  CAS  PubMed  Google Scholar 

  20. Lopes SCA, Giuberti CS, Rocha TGR, Ferreira DS, Leite EA, Oliveira MC. Liposomes as Carriers of Anticancer Drugs. In: Rangel L, editor. Cancer treatment—conventional and innovative approaches. Chapter 4. InTech, 2013. doi:10.5772/55290.

  21. Charron DM, Chen J, Zheng G. Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res. 2015;166:103–27. doi:10.1007/978-3-319-16555-4_5.

    Article  CAS  PubMed  Google Scholar 

  22. Cole JT, Holland NB. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res. 2015;5:295–309. doi:10.1007/s13346-015-0218-2.

    Article  CAS  PubMed  Google Scholar 

  23. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 2012;13:1234–41. doi:10.1016/S1470-2045(12)70476-X.

    Article  CAS  PubMed  Google Scholar 

  24. Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res. 2005;44:68–97. doi:10.1016/j.plipres.2004.12.001.

    Article  CAS  PubMed  Google Scholar 

  25. Kao HW, Lin YY, Chen CC, Chi KH, Tien DC, Hsia CC, et al. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology. 2014;25:295102. doi:10.1088/0957-4484/25/29/295102.

    Article  PubMed  Google Scholar 

  26. Lehtinen J, Raki M, Bergström KA, Uutela P, Lehtinen K, Hiltunen A, et al. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLoS One. 2012;7, e41410. doi:10.1371/journal.pone.0041410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J, Choi Y, Kim K, Hong S, Park HY, Lee T, et al. Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. Bioconjug Chem. 2010;21:940–6. doi:10.1021/bc9004975.

    Article  CAS  PubMed  Google Scholar 

  28. Hertlein L, Lenhard M, Kirschenhofer A, Kahlert S, Mayr D, Burges A, et al. Cetuximab monotherapy in advanced cervical cancer: a retrospective study with five patients. Arch Gynecol Obstet. 2011;283:109–13. doi:10.1007/s00404-010-1389-1.

    Article  CAS  PubMed  Google Scholar 

  29. Ocvirk J, Cencelj S. Management of cutaneous side-effects of cetuximab therapy in patients with metastatic colorectal cancer. J Eur Acad Dermatol Venereol. 2010;24:453–9. doi:10.1111/j.1468-3083.2009.03446.x.

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Cao Y, Tan A, Liao C, Gao F. Cetuximab-based therapy versus non-cetuximab therapy for advanced cancer: a meta-analysis of 17 randomized controlled trials. Cancer Chemother Pharmacol. 2010;65:849–61. doi:10.1007/s00280-009-1090-x.

    Article  CAS  PubMed  Google Scholar 

  31. Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004;10:2981–9. doi:10.2174/1381612043383467.

    Article  CAS  PubMed  Google Scholar 

  32. Corvo ML, Marinho HS, Marcelino P, Lopes RM, Vale CA, Marques CR, et al. Superoxide dismutase enzymosomes: carrier capacity optimization, in vivo behaviour and therapeutic activity. Pharm Res. 2015;32:91–102. doi:10.1007/s11095-014-1447-7.

    Article  CAS  PubMed  Google Scholar 

  33. Alavi SE, Esfahani MK, Ghassemi S, Akbarzadeh A, Hassanshahi G. In vitro evaluation of the efficacy of liposomal and pegylated liposomal hydroxyurea. Indian J Clin Biochem. 2014;29:84–8. doi:10.1007/s12291-013-0315-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Menezes DE L, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998;58:3320–30.

    Google Scholar 

  35. Sapra P, Allen TM. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 2002;62:7190–4.

    CAS  PubMed  Google Scholar 

  36. Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–6.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We acknowledge Fundação para a Ciência e a Tecnologia (FCT/MEC) for financial support (Project PTDC/BBB-NAN/1812/2012; UCIBIO UID/Multi/04378/2013; UID/DTP/04138/2013). We thank M.Gajewska for MG85 synthesis and P. Borralho from iMed for Cetuximab.

M. Luísa Corvo and Ana Soraia Mendo contributed equally to the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Viana Baptista or Alexandra R Fernandes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Supplementary Figure S1

(JPG 32 kb)

Supplementary Figure S2

(JPG 41 kb)

Supplementary Figure S3

(JPG 30 kb)

Supplementary Figure S4

(JPG 47 kb)

Supplementary Figure S5

(JPG 33 kb)

Supplementary Figure S6

(JPG 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corvo, M.L., Mendo, A.S., Figueiredo, S. et al. Liposomes as Delivery System of a Sn(IV) Complex for Cancer Therapy. Pharm Res 33, 1351–1358 (2016). https://doi.org/10.1007/s11095-016-1876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1876-6

KEY WORDS

Navigation