Skip to main content

Advertisement

Log in

Anti-inflammatory Effect and Toxicology Analysis of Oral Delivery Quercetin Nanosized Emulsion in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study evaluates the advantage of the quercetin encapsulation in nanosized emulsion (QU-NE) administered orally in rats in order to demonstrate its anti-oedematous and antioxidant effects as well as its toxicity.

Methods

The nanocarriers were prepared using the hot solvent diffusion with the phase inversion temperature methods. The nanocarriers physicochemical properties were then investigated. The anti-edematous activity was tested using paw edema in rats. In addition, NF-kB expression in subcutaneous tissue of the paws was accessed by immunohistochemistry while the lipid peroxidation was analyzed in the liver by malondialdehyde reaction with thiobarbituric acid. Hematological, renal and hepatic toxicity as well as the genetic damage were also evaluated.

Results

The results demonstrated that QU-NE exhibited pronounced anti-oedematous property comparable to drug diclofenac. This effect was associated with NF-κB pathway inhibition. The lipid peroxidation was also only reduced in rats treated with QU-NE. Besides this, no genetic damage, hematological, renal or hepatic toxicities were observed after administration of QU-NE.

Conclusions

These results suggest that quercetin nanosized emulsion exhibits anti-oedematous and antioxidant properties and does not demonstrate toxic effects. This indicates that it has a potential application in the treatment of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALT:

Alanine-aminotransferase

AST:

Aspartate-aminotransferase

CMC:

Carboxymethylcellulose

CO:

Castor oil

HBSS:

Hank’s balanced salt solution

HEPES:

Sodium 4-(2-hydroxyethyl)-1-piperazineethanesulfonate

HPLC:

High pressure liquid chromatography

LY:

Metoprolol tartrate and lucifer yellow

MDA:

Malondialdehyde

MES:

Methanesulfonic acid

MN:

Micronucleus

NCEs:

Normochromatic erythrocytes

NE:

Unloaded nanosized emulsion

NSAID:

Nonsteroidal anti-inflammatory drug

PAPP :

Intestinal permeability coefficients

PCEs:

Polychromatic erythrocytes

PDI:

Polydispersed index

PEG 660-stearate:

12-hydroxystearic acid–polyethylene glycol copolymer

PIT:

Phase inversion technique

QU:

Quercetin

QU-NE:

Quercetin nanosized emulsion

QU-SUSP:

Free quercetin

ROS:

Reactive oxygen species

TEER:

Transepithelial electrical resistance

REFERENCES

  1. Calder PC, Albers R, Antoine JM, Blum S, Bourdet-Sicard R, Ferns GA, et al. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009;101(1):S1–45.

    Article  PubMed  Google Scholar 

  2. Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1(1):15–31.

    Article  CAS  PubMed  Google Scholar 

  3. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12):S140–6.

    Article  PubMed  Google Scholar 

  4. Pan M-H, Lai C-S, Dushenkov S, Ho C-T. Modulation of inflammatory genes by natural dietary bioactive compounds. J Agric Food Chem. 2009;57(11):4467–77.

    Article  CAS  PubMed  Google Scholar 

  5. Longui CA. Corticoterapia: minimizando efeitos colaterais. J Pediatr. 2007;83(5):163–71.

    Article  Google Scholar 

  6. Hilário MOE, Terreri MT, Len CA. Anti-inflamatórios não-hormonais: inibidores da cicloxigenase 2. J Pediatr. 2006;82(5):206–12.

    Article  Google Scholar 

  7. Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, et al. Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol. 2006;72(10):1304–10.

    Article  CAS  PubMed  Google Scholar 

  8. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(2):1061–80.

    Article  CAS  PubMed  Google Scholar 

  9. Jakhar R, Paul S, Park YR, Han J, Kang SC. 3,5,7,3′,4′-Pentamethoxyflavone, a quercetin derivative protects DNA from oxidative challenges: Potential mechanism of action. J Photochem Photobiol B, Biol. 2014;131:96–103.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari C. Free radicals, lipid peroxidation and antioxidants in apoptosis: implications in cancer, cardiovascular and neurological diseases. Biol Brat. 2000;55(6):10.

    Google Scholar 

  11. Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gugler R, Leschik M, Dengler HJ. Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol. 1975;9(2–3):229–34.

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Bruno RS. Endogenous and exogenous mediators pf quercetin bioavailability. J Nutr Biochem. 2015;26:201–10.

    Article  PubMed  Google Scholar 

  14. Khaled KA, El-Sayed YM, Al-Hadiya BM. Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Dev Ind Pharm. 2003;29(4):397–403.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Gao F, Jiang S, Chen L, Liu L, Yu H, et al. Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: mechanism and effect in rats. Int J Pharm. 2013;452(1–2):374–81.

    Article  CAS  PubMed  Google Scholar 

  16. Porter CJ, Wassan KM, Constantinides P. Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 2008;60(6):615–60.

    Article  CAS  PubMed  Google Scholar 

  17. Dora CL, Silva LFC, Tagliari MP, Silva MAS, Lemos-Senna E. Formulation study of quercetin-loaded lipid-based nanocarriers obtained by hot solvent diffusion method. Lat Am J Pharm. 2011;30(23):289–96.

    CAS  Google Scholar 

  18. Dora CL, Silva LF, Putaux JL, Nishiyama Y, Pignot-Paintrand I, Borsali R, et al. Poly(ethylene glycol) hydroxystearate-based nanosized emulsions: effect of surfactant concentration on their formation and ability to solubilize quercetin. J Biomed Nanotechnol. 2012;8:202–10.

    Article  CAS  PubMed  Google Scholar 

  19. Hadrich G, Monteiro SO, Rodrigues MR, de Lima VR, Putaux JL, Bidone J, et al. Lipid-based nanocarrier for quercetin delivery: system characterization and molecular interactions studies. Drug Dev Ind Pharm. 2015;16:1–36.

    Article  Google Scholar 

  20. Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LF, Lemos-Senna E, et al. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res. 2010;61:288–97.

    Article  CAS  PubMed  Google Scholar 

  21. Schwingel TE, Klein CP, Nicoletti NF, Dora CL, Hädrich G, Bica CG, et al. Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedeberg’s Arch Pharmacol. 2014;387:837–48.

    Article  CAS  Google Scholar 

  22. Kratz JM, Teixeira MR, Koester LS, Simões CMO. An HPLC-UV method for the measurement of permeability of marker drugs in the Caco-2 cell assay. Braz J Med Biol Res. 2011;44:531–7.

    Article  CAS  PubMed  Google Scholar 

  23. Tavelin S, Gråsjö J, Taipalensuu J, Ocklind G, Artursson P. Applications of epithelial cell culture in studies of drug transport. Methods Mol Biol. 2002;72:188–233.

    Google Scholar 

  24. Rogerio AP, Kanashiro A, Fontanari C, da Silva EV, Lucisano-Valim YM, Soares EG, et al. Anti-inflammatory activity of quercetin and isoquercetrin in experimental murine allergic asthma. Inflamm Res. 2007;56:402–8.

    Article  CAS  PubMed  Google Scholar 

  25. Jeng-Shyan D, Chuan-Sung C, Shyh-Shyun H, Pei-Hsin S, Tsung-Hui L, Guan-Jhong H. Antioxidant, analgesic, and anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola. J Ethnopharmacol. 2011;137:1161–71.

    Article  Google Scholar 

  26. Gupta AK, Parasar D, Sagar A, Choudhary V, Chopra BS, Garg R, et al. Analgesic and anti-inflammatory properties of gelsolin in acetic acid induced writhing, tail immersion and carrageenan induced paw edema in mice. PLoS ONE. 2015;14:1–16.

    Google Scholar 

  27. Winter CA, Risely EA, Nuss GW. Carrageenan induced edema in the hind paw of the rat as an assay for anti-inflammatory drug. Proc Soc Exp Biol Med. 1962;111:544.

    Article  CAS  PubMed  Google Scholar 

  28. Anandhi S et al. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol. 2010;48(1):187–92.

    Article  Google Scholar 

  29. Oakes KD, Van Der Kraak GJ. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol. 2003;63(4):447–63.

    Article  CAS  PubMed  Google Scholar 

  30. OECD. Test N°. 474: Mammalian Erythrocyte Micronucleus Test. 2001.

  31. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585:325–37.

    Article  CAS  PubMed  Google Scholar 

  32. Maalik A, Khan FA, Mumtaz A, Mehmood A, Azhar S, Atif M, et al. Pharmacological applications of quercetin and its derivatives: a short review. Trop J Pharm Res. 2014;13:1561–6.

    Article  CAS  Google Scholar 

  33. Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interf Sci. 2015;221:60–76.

    Article  CAS  Google Scholar 

  34. Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal. 2004;34:333–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006;12:3193–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ting Y, Jiang Y, Ho C-T, Huang Q. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods. 2014;7:112–28.

    Article  CAS  Google Scholar 

  37. Lu W, Kelly AL, Miao S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol. 2016;47:1–9.

    Article  CAS  Google Scholar 

  38. Di Rosa M, Giroud JP, Willoughby DA. Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971;104(1):15–29.

    Article  PubMed  Google Scholar 

  39. Sugishita E, Amagaya S, Ogihara Y. Anti-inflammatory testing methods - comparative-evaluation of mice and rats. J Pharmacobiodyn. 1981;4(8):565–75.

    Article  CAS  PubMed  Google Scholar 

  40. Gusdinar T, Kartasasmita RE, Adnyana IK. Anti-inflammatory and antioxidant activity of Quercetin-3, 3′, 4′-Triacetate. J Pharmacol Toxicol. 2011;6(2):182–8.

    Article  CAS  Google Scholar 

  41. Chen-yu G, Chun-fen Y, Qi-lu L, Qi T, Yan-wei X, Wei-na L, et al. Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm. 2012;430(1–2):292–8.

    Article  PubMed  Google Scholar 

  42. Gui SY, Wu L, Peng DY, Liu QY, Yin BP, Shen JZ. Preparation and evaluation of a microemulsion for oral delivery of berberine. Die Pharm – Int J Pharm Sci. 2008;63:516–9.

    CAS  Google Scholar 

  43. Yu A, Wang H, Wang J, Cao F, Gao Y, Cui J, et al. Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded microemulsion. J Pharm Sci. 2011;100:933–41.

    Article  CAS  PubMed  Google Scholar 

  44. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330:155–63.

    Article  CAS  PubMed  Google Scholar 

  45. Yoon S, Lee HJ, Choi SH, Chang E-J, Lee SY, Lee EJ. Quercetin inhibits IL-1b-Induced inflammation, hyaluronan production and adipogenesis in orbital fibroblasts from graves’ orbitopathy. PLoS ONE. 2011;6(10):1–10.

    Article  Google Scholar 

  46. Wan AY, Tang MH, Chen XC, Chen LJ, Wei YQ, Wang YS. Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz J Med Biol Res. 2014;47(8):655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gardi C, Bauerova K, Stringa B, Kuncirova V, Slovak L, Ponist S, et al. Quercetin reduced inflammation and increased antioxidante defense in rat adjuvant arthritis. Arch Biochem Biochem. 2015;583:150–7.

    Article  CAS  Google Scholar 

  48. Rotelli AE, Guardia T, Juarez AO, de la Rocha NE, Pelzer LE. Comparative study of flavonoids in experimental models of inflammation. Pharm Res. 2003;48(6):601–6.

    Article  CAS  Google Scholar 

  49. Martinez-flores SG, Sanchez-camps S, Gonzalez-gallego. Quercetin prevents nitric oxide production and nuclear factor kappa B activation in interlekin 1-β activated rat hepatocytes. J Nutr. 2005;135:1359–65.

    Google Scholar 

  50. Ghosh A, Mandal AK, Sarkar S, Panda S, Das N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci. 2009;84:75–80.

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108:419–24.

    Article  CAS  PubMed  Google Scholar 

  52. Hatanaka J, Chikamori H, Sato H, Uchida S, Debari K, Onoue S, et al. Physicochemical and pharmacological characterization of α-tocopherol-loaded nano-emulsion system. Int J Pharm. 2010;396:188–93.

    Article  CAS  PubMed  Google Scholar 

  53. Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotocix shock. J Agric Food Chem. 2015;63(23):5603–11.

    Article  CAS  PubMed  Google Scholar 

  54. Larrosa M, Tomé-Carneiro J, Yáñez-Gascón MJ, Alcántara D, Selma D, Beltrán D, et al. Preventive oral treatment with resveratrol pro-prodrugs drastically reduce colon inflammation in rodents. J Med Chem. 2010;53:7365–76.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Ma Y, Zheng Y, Song J, Yang X, Bi C, et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int J Pharm. 2013;441:728–35.

    Article  CAS  PubMed  Google Scholar 

  56. Fujimori S, Gudis K, Sakamoto C. A review of anti-inflammatory drug-induced gastrointestinal injury: focus on prevention of small intestinal injury. Pharmaceuticals. 2010;3:1187–201.

    Article  CAS  PubMed Central  Google Scholar 

  57. Hong YJ, Mitchell AE. Identification of glutathione-related quercetin metabolites in humans. Chem Res Toxicol. 2006;19(11):1525–32.

    Article  CAS  PubMed  Google Scholar 

  58. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45:2179–205.

    Article  CAS  PubMed  Google Scholar 

  59. Ruiz MJ, Fernandez M, Pico Y, Manes J, Asensi M, Carda C, et al. Dietary administration of high doses of Pterostilbene and quercetin to mice is not toxic. J Agric Food Chem. 2009;57:3180–6.

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto T. Safety of quercetin for clinical application. Int J Mol Med. 2005;16:275–8.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful to CNPq for the financial support to the project Casadinho/PROCAD under proposal 552457/2011-6, Fundação de Apoio a Pesquisa do Estado de Minas Gerais and Rede de Pesquisa em Doenças Infecciosas Humanas e Animais do Estado de Minas Gerais. G. Hadrich received grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Lima Dora.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicting interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hädrich, G., Vaz, G.R., Maidana, M. et al. Anti-inflammatory Effect and Toxicology Analysis of Oral Delivery Quercetin Nanosized Emulsion in Rats. Pharm Res 33, 983–993 (2016). https://doi.org/10.1007/s11095-015-1844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1844-6

KEY WORDS

Navigation