Skip to main content

Advertisement

Log in

Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

ATRA:

All Trans Retinoic Acid

AUC:

Area under the curve

CMC:

Critical Micellar Concentration

DEHP:

Di-(2-ethylhexyl) phthalate

DSPE:

Distearoylphosphatidylethanolamine

EPR:

Enhanced Permeation and Retention

HA:

Hyaluronic acid

IP:

Intraperitoneal

IV:

Intravenous

LHR:

Low molecular weight heparin-all-trans-retinoid acid

LLC:

N-lauryl-carboxymethyl-chitosan

mPEG/MPEG:

Methoxy PEG

MTD:

Maximum Tolerated Dose

MW:

Molecular Weight

NQO1:

NADP(H): quinone oxidoreductase 1

OSC:

N-octyl-O-sulfate-chitosan

p-(CLco-TMC):

Poly (e-caprolactone-co-trimethylenecarbonate)

PBLA:

Poly (β-benzyl-L-aspartate)

PCEC:

Poly (ε-caprolactone) -polyethylene (glycol) - poly (ε-caprolactone)

PCL:

Poly (ε-caprolactone)

PDENA:

Poly (2-(4-vinylbenzyloxy) -N,N-diethylnicotinamide)

PDLLA:

Poly (D-L Lactide)

PEG:

Polyethylene Glycol

PEO:

Polyethylene Oxide

PH:

Poly (L-histidine)

PLGA:

Poly (DL-lactic-co-glycolic acid)

PLLA:

Poly (L-lactic acid)

PM:

Polymeric micelle

PMMD:

Poly (3 (S)-methyl morpholine-2,5-dione)

PTX:

Paclitaxel

PVC:

Poly vinyl chloride

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

tBA:

(t- butyl acrylate)

TPGS:

d-α-tocopheryl polyethylene glycol

VBODENA:

4- (2-vinylbenzyloxy)-N,N- (diethylnicotinamide)

WHO:

World Health Organization

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Hortobagyi GN. Treatment of breast cancer. N Engl J Med. 2011;339:974–84.

    Google Scholar 

  3. Yu JM, Li WD, Lu L, Zhou XY, Wang DY, Li HM, et al. Preparation and characterization of galactosylated glycol chitosan micelles and its potential use for hepatoma-targeting delivery of doxorubicin. J Mater Sci Mater Med. 2014;25:691–1.

    Article  PubMed  CAS  Google Scholar 

  4. Park TG, Yoo HS. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001;70:63–70.

    Article  PubMed  Google Scholar 

  5. Park TG, Lee EA, Yoo HS. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release. 2002;82:17–27.

    Article  PubMed  Google Scholar 

  6. Hami Z, Amini M, Khansari MZ, Rezayat SM, Gilani K. Doxorubicin-conjugated PLA-PEG-folate based polymeric micelle for tumor-targeted delivery: synthesis and in vitro evaluation. DARU J Pharm Sci. 2014;22–30.

  7. Kataoka K, Matsumoto M, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)–poly(b-benzyl-Laspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  PubMed  CAS  Google Scholar 

  8. Han M, Diao YY, Jiang HL, Ying XY, Chen DW, Liang WQ, et al. Molecular mechanism study of chemosensitization of doxorubicin-resistant human myelogenous leukemia cells induced by a composite polymer micelle. Int J Pharm. 2011;420:404–11.

    Article  PubMed  CAS  Google Scholar 

  9. Kataoka K, Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997;48:195–1.

    Article  Google Scholar 

  10. Bae HY, Lee ES, Na K. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release. 2005;103:405–18.

    Article  PubMed  CAS  Google Scholar 

  11. Yin H, Bae YH. Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly(L-histidine)-b-poly(L-lactide)- b-poly(ethylene glycol). Eur J Pharm Biopharm. 2009;71:223–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    Article  PubMed  CAS  Google Scholar 

  13. Nakanishu T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74:295–02.

    Article  Google Scholar 

  14. Préat V, Danhier F, Magotteaux N, Ucakar B, Lecouturier N, Brewster M. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for Paclitaxel. Eur J Pharm Biopharm. 2009;73:230–8.

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Wang G, Zhao Y, Liu W. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG–PLLA–PMMD) as self-assembly micelle delivery system for paclitaxel. Int J Pharm. 2012;430:282–91.

    Article  PubMed  CAS  Google Scholar 

  16. Yao J, Zhou J, Dahmani FZ, Yang H, Zhang T, Zhan Q. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation. Eur J Pharm Sci. 2012;47:179–89.

    Article  PubMed  CAS  Google Scholar 

  17. Fang X, Sha X, Juan W, Li Y, Yuan S, Hao J, et al. Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: formulation. Optimization and in vitro characterization. Int J Pharm. 2009;376:176–85.

    Article  PubMed  CAS  Google Scholar 

  18. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72:191–02.

    Article  PubMed  CAS  Google Scholar 

  19. Quin ZY, Wang Y, Wang C, Gong CY, Yang YJ, Gua G, et al. Polysorbate 80 coated poly (ε-caprolactone)–poly (ethylene glycol)–poly (ε-caprolactone) micelles for paclitaxel delivery. Int J Pharm. 2013;434:1–8.

    Google Scholar 

  20. Hennink WE, Soga O, Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release. 2005;103:341–53.

    Article  PubMed  CAS  Google Scholar 

  21. Park K, Jeong JH, Huh KM, Lee SC, Cho YW, Lee J. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101:59–68.

    Article  PubMed  CAS  Google Scholar 

  22. Dhabolkar RD, Sawant RM, Mongyat DA, Devaranjan PV, Torchilin VP. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315:148–57.

    Article  CAS  Google Scholar 

  23. Li T, Han R, Wang M, Liu C, Jing X, Huang Y. Fusiform micelles from nonlinear poly(ethylene glycol)/polylactide copolymers as biodegradable drug carriers. Macromol Biosci. 2011;11:1570–8.

    PubMed  CAS  Google Scholar 

  24. Liang N, Sun S, Li X, Piao H, Cui F, Fang L, et al. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Int J Pharm. 2012;423:480–8.

    Article  PubMed  CAS  Google Scholar 

  25. Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxypoly(ethylene glycol)/poly(q-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release. 2005;109:158–68.

    Article  PubMed  CAS  Google Scholar 

  26. Park K, Acharya G, Kim S, Kim JY. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J Control Release. 2008;132:222–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kim SC, Yoon HJ, Lee JW, Yu J, Park ES, Chi SC. Investigation of the release behavior of DEHP from infusion sets by paclitaxel-loaded polymeric micelles. Int J Pharm. 2005;293:303–10.

    Article  PubMed  CAS  Google Scholar 

  28. Hayama A, Yamamoto T, Yokoyama M, Kawano K, Hattori Y, Maitani Y. Polymeric micelles modified by folate-PEG-lipid for targeted drug delivery to cancer cells in vitro. J Nanosci Nanotechnol. 2007;8:1–6.

    Google Scholar 

  29. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21:2001–7.

    Article  PubMed  CAS  Google Scholar 

  30. Gao J, Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, et al. β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release. 2007;122:365–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.

    Article  CAS  Google Scholar 

  32. Jones MC, Leroux JC. Polymeric micelles: a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    Article  PubMed  CAS  Google Scholar 

  33. Cabral H, Kataoka K. Progress of drug loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76.

    Article  PubMed  CAS  Google Scholar 

  34. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  PubMed  CAS  Google Scholar 

  35. Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric drugs. Prog Polym Sci. 2006;31:359–97.

    Article  CAS  Google Scholar 

  36. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  37. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–07.

    Article  CAS  Google Scholar 

  38. Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res. 1991;51:3229–36.

    PubMed  CAS  Google Scholar 

  39. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    PubMed  CAS  Google Scholar 

  40. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95:4607–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hashizum H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156:1363–80.

    Article  Google Scholar 

  42. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multi-functional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst. 2005;1:242–50.

    Article  PubMed  CAS  Google Scholar 

  43. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55:403–19.

    Article  PubMed  CAS  Google Scholar 

  44. Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated system. Pharmazie. 2002;57:5–29.

    PubMed  CAS  Google Scholar 

  45. Huh KM, Min HS, Lee SC, Lee HJ, Kim S, Park K. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J Control Release. 2008;126:122–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ping Q, Zhang C, Qu G, Yao Z, Wu X. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci. 2009;37:98–5.

    Article  PubMed  CAS  Google Scholar 

  47. Spencer CM, Faulds D. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs. 1994;48:794–47.

    Article  PubMed  CAS  Google Scholar 

  48. Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother. 2002;3:755–66.

    Article  PubMed  CAS  Google Scholar 

  49. Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 2000;88:2619–28.

    Article  PubMed  CAS  Google Scholar 

  50. Goldspiel BR. Clinical overview of the taxanes. Pharmacotherapy. 1997;17:110–25.

    Google Scholar 

  51. Weiss RB, Donehower RC, Wiernik PH. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8:1263–8.

    PubMed  CAS  Google Scholar 

  52. Onetto N, Canett R, Winograd B, Catane R, Dougan M, Grechko J, et al. Overview of taxol safety. J Natl Cancer Inst Monogr. 1993;15:131–9.

    PubMed  Google Scholar 

  53. Strieth S, Dunau C, Michaelis U, Jäger L, Gellrich D, Wollenberg B, et al. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck. 2014;36:976–84.

    Article  PubMed  Google Scholar 

  54. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421:160–9.

    Article  PubMed  CAS  Google Scholar 

  55. Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarriers. Int J Pharm. 2013;441:701–11.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, Mei L, Feng SS. Paclitaxel drug delivery systems. Expert Opin Drug Deliv. 2013;10:325–40.

    Article  PubMed  CAS  Google Scholar 

  57. Cline EN, Li MH, Choi SK, Herbstman JF, Kaul N, Meyhöfer E, et al. Paclitaxel-conjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules. 2013;14:654–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kannan V, Balabathula P, Divi MK, Thoma LA, Wood GC. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes. J Liposome Res. 2014;26:1–8.

    Google Scholar 

  59. Koudelka S, Turánek J. Liposomal paclitaxel formulations. J Control Release. 2012;163:322–34.

    Article  PubMed  CAS  Google Scholar 

  60. Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60:899–14.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang X, Jackson JK, Burt HM. Development of amphiphilicdiblock copolymers as micellar carriers of taxol. Int J Pharm. 1996;132:195–6.

    Article  CAS  Google Scholar 

  62. Zhang X, Burt HM, Von Hoff D, Dexter D, Mangold G, Degen D, et al. An investigation of the anti-tumour activity and bio-distribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol. 1997;40:81–6.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang X, Burt HM, Mangold G, Dexter D, Von Hoff D, Mayer L, et al. Anti-tumor efficacy and bio-distribution of intravenous polymeric micellar paclitaxel. Anti-Cancer Drugs. 1997;8:696–01.

    Article  PubMed  CAS  Google Scholar 

  64. Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL. Development of copolymers of poly(D, L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf B: Biointerfaces. 1999;16:161–71.

    Article  CAS  Google Scholar 

  65. Calley D, Autian J, Guess WL. Toxicology of a series of phthalate esters. J Pharm Sci. 1966;55:158–62.

    Article  PubMed  CAS  Google Scholar 

  66. Hill SS, Shaw BR, Wu AH. The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinyl chloride tubing during respiratory and non-respiratory exposure. Clin Chim Acta. 2001;304:1–8.

    Article  PubMed  CAS  Google Scholar 

  67. Burt HM, Liggins RT. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev. 2002;54:191–2.

    Article  PubMed  Google Scholar 

  68. Wang Y, Wang C, Wang C, Gong CY, Wang Y, Guo G, et al. Polysorbate 80 coated poly (ε-caprolactone)–poly (ethylene glycol)–poly (ε-caprolactone) micelles for paclitaxel delivery. Int J Pharm. 2012;434:1–8.

    Article  PubMed  CAS  Google Scholar 

  69. Yoncheva K, Milanidova I, Calleja P, Agüreos M, Petrov P, Tsvetanov C, et al. Stabilized micelles as delivery vehicles for paclitaxel. Int J Pharm. 2012;436:258–64.

    Article  PubMed  CAS  Google Scholar 

  70. Zhao Y, Li J, Yu H, Wang G, Liu W. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG–PLLA–PMMD) as self-assembly micelle delivery system for paclitaxel. Int J Pharm. 2012;430:282–91.

    Article  PubMed  CAS  Google Scholar 

  71. Šmejkalová D, Nešporová K, Hermannová M, Angeles GH, Cožíková D, Vištejnová L. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int J Pharm. 2014;466:147–55.

    Article  PubMed  CAS  Google Scholar 

  72. Knapczyk J, Krowczynski L, Krzck J, Brzeski M, Nimberg E, Schenk E, et al. Requirements of Chitosan for pharmaceutical and biomedical applications. Chitin and chitosan: sources, chemistry, biochemistry, physical properties and applications. London: Elsevier; 1989. p. 657–63.

    Google Scholar 

  73. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, et al. Pharmacokinetics, bio-distribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29:1233–41.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang C, Ding Y, Yu LL, Ping QN. Polymeric micelle systems of hydroxyl camptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives. Colloids Surf B: Biointerfaces. 2007;55:192–9.

    Article  PubMed  CAS  Google Scholar 

  75. Miwa A, Ishibe A, Nakano M, Yamahira T, Itai S, Jinno S, et al. Development of novel chitosan derivatives as micellar carriers of Taxol. Pharm Res. 1998;15:1844–50.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang C, Ping QN, Zhang HJ, Shen J. Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of Taxol. Carbohydr Polym. 2003;54:137–41.

    Article  CAS  Google Scholar 

  77. Zhang C, Ping QN, Zhang HJ. Self-assembly and characterization of PTX-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf B: Biointerfaces. 2004;39:69–75.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W. Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. Eur J Pharm Sci. 2008;33:415–23.

    Article  PubMed  CAS  Google Scholar 

  79. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacylpolymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2:979–82.

    Article  CAS  Google Scholar 

  80. Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP. PEG–PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target. 2003;11:87–92.

    Article  PubMed  CAS  Google Scholar 

  81. Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release. 2005;105:269–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang Y, Yu L, Han L, Sha X, Fang X. Difunctionalpluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm. 2007;337:63–73.

    Article  PubMed  CAS  Google Scholar 

  83. Wang Y, Li Y, Wang Q, Wu J, Fang X. Pharmacokinetics and Biodistribution of paclitaxel loaded pluronic P105/L101 mixed polymeric micelles. Yakugaku Zasshi. 2008;128:941–50.

    Article  PubMed  CAS  Google Scholar 

  84. Dahmani FZ, Yang H, Yao J, Zhou J, Zhang T, Zhang Q. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation. Eur J Pharm Sci. 2012;47:179–89.

    Article  PubMed  CAS  Google Scholar 

  85. Liu Y, Zhang B, Yan B. Enabling anticancer therapeutics by nanoparticle carriers: the delivery of paclitaxel. Int J Mol Sci. 2011;12:4395–413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yahuafai J, Asai T, Nakamura G, Fukuta T, Siripong P, Hyodo K, et al. Suppression in mice of immunosurveillance against PEGylated liposomes by encapsulated doxorubicin. J Control Release. 2014;192:167–73.

    Article  PubMed  CAS  Google Scholar 

  87. Dicheva BM, Hagen TMLT, Schipper D, Seynhaeve ALB, Rhoon GCB, Eggermont AMM. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted thermos-sensitive cationic liposomes. J Control Release. 2014;195:37–48.

    Article  PubMed  CAS  Google Scholar 

  88. Xu H, Hu M, Yu X, Li Y, Fu Y, Zhou X, et al. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. Eur J Pharm Biopharm. 2015;91:66–74.

    Article  PubMed  CAS  Google Scholar 

  89. Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, et al. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorucin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Intface Sci. 2011;363:403–9.

    Article  CAS  Google Scholar 

  90. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, et al. PEGylatedpoly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–87.

    Article  PubMed  CAS  Google Scholar 

  91. Mastria ME, Chen M, McDaniel JR, Li X, Hyun J, Dewhirst MW. Doxorubicin-conjugated polypeptide nanoparticles inhibit metastasis in two murine models of carcinoma. J Control Release. 2015;208:52–8.

    Article  PubMed  CAS  Google Scholar 

  92. Zou Y, Liu P, Li CH, Zhi XT. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells. Biomed Pharmacother. 2015;69:355–60.

    Article  PubMed  CAS  Google Scholar 

  93. Kataoka K, Ishihara A, Harada A, Miyazaki H. Effect of block copolymer micelles as long- secondary structure of poly(L-lysine) segments on the micellization of poly(ethylene glycol)–poly(L-lysine) block co- polymer partially substituted with hydrocinnamoyl group at N-position in aqueous milieu. Macromolecules. 1998;31:6071–6.

    Article  CAS  Google Scholar 

  94. Yokoyama M, Inoue S, Kataoka K, Yui N, Sakurai Y. Macromol. Preparation of adriamycin-conjugated poly(ethylene glycol)– poly(aspartic acid) block copolymer: a new type of poly- meric anticancer agent. Makromol Chem Rapid Commun. 1987;8:431–5.

    Article  CAS  Google Scholar 

  95. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Ekimoto H, Okamoto K, et al. Composition-dependent in vivo antitumor activity of adriamycin-conjugated polymeric micelle against murine colon adenocarcinoma 26. Drug Deliv. 1993;1:11–9.

    Article  CAS  Google Scholar 

  96. Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly(ethylene oxide)–poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped Adriamycin. J Control Release. 1994;32:269–77.

    Article  CAS  Google Scholar 

  97. Kwon GS, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide–aspartate) block copolymer–adriamycin conjugate. J Control Release. 1994;29:17–23.

    Article  CAS  Google Scholar 

  98. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, et al. Polymer micelles as novel drug carrier: adriamycin-conjugated poly (ethylene glycol)-poly (aspartic acid) block co-polymer. J Control Release. 1990;11:269–78.

    Article  CAS  Google Scholar 

  99. Kataoka K, Fukushima S, Miyata K, Bae Y, Nishiyama N. Smart polymeric micelles for gene and drug delivery. Drug Discov Today Technol. 2005;2:21–6.

    Article  PubMed  CAS  Google Scholar 

  100. Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res. 2002;93:1145–53.

    Article  PubMed  CAS  Google Scholar 

  101. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91:1775–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release. 2003;91:103–13.

    Article  PubMed  CAS  Google Scholar 

  103. Jeong YI, Na HS, Cho KO, Lee HC, Nah JW, Cho CS. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(gamma-benzyl L-glutamate)/poly(ethylene oxide). Int J Pharm. 2009;365:150–6.

    Article  PubMed  CAS  Google Scholar 

  104. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;28:860–2.

    Google Scholar 

  105. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55:219–29.

    Article  PubMed  CAS  Google Scholar 

  106. Patankar N, Waterhouse D. Nano-particulate drug delivery systems for camptothecins. Cancer Ther. 2012;8:90–4.

    Google Scholar 

  107. Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 2012;172:48–61.

    Article  CAS  Google Scholar 

  108. Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013;166:1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, Boothman DA, et al. β -Lapachone-containing PEG– PLA polymer micelles as novel nano-therapeutics against NQO1- overexpressing tumor cells. J Control Release. 2007;122:365–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yasugi K, Nagasaki Y, Kato M, Kataoka M. Preparation and characterization of polymer micelles from poly (ethylene glycol)-poly (D, L-lactide) block copolymers as potential drug carrier. J Control Release. 1999;62:89–100.

    Article  PubMed  CAS  Google Scholar 

  111. Riley T, Govender T, Stolnik T, Xiong CD, Garnrtte MC, Illum L. Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids Surf B: Biointerfaces. 1999;16:147–59.

    Article  CAS  Google Scholar 

  112. Huh KM, Lee SC, Cho YW. Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101:59–68.

    Article  PubMed  CAS  Google Scholar 

  113. Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release. 2002;82:17–27.

    Article  PubMed  CAS  Google Scholar 

  114. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  PubMed  CAS  Google Scholar 

  115. Moretton MA, Glisoni RJ, Chiappetta DA, Sosnic A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B: Biointerfaces. 2010;79:467–79.

    Article  PubMed  CAS  Google Scholar 

  116. Zhang X, Zeng X, Liang X, Yang Y, Li X, Chen H, et al. The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials. 2014;35:9144–54.

    Article  PubMed  CAS  Google Scholar 

  117. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophore-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10:3708–16.

    Article  PubMed  CAS  Google Scholar 

  118. Kim DW, Kim SY, Kim SW, Shin SW, Kim JS, Park K, et al. Multicenter phase II trial of Genexol-PM, a novel cremophore-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18:2009–14.

    Article  PubMed  Google Scholar 

  119. Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, et al. A phase II trial of cremophore EL-free paclitaxel (Grnexol-PM) and gemicitabine in patient with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2014;74:277–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase and pharmacokinetic study of NK 105, a paclitaxel incorporating micellar nanoparticle formulation. Br J Cancer. 2007;97:170–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles which is designed based on EPR effect. Adv Drug Deliv Rev. 2011;63:184–92.

    Article  PubMed  CAS  Google Scholar 

  122. Wilson RH, Plummer R, Adam J, Eatock MM, Boddy AV, Griffin M, et al. Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. J Clin Oncol. 2008 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 2008;26:2573.

  123. Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol. 2014;44:515–25.

    Article  PubMed  Google Scholar 

  124. Sutton D, Nasongkla N, Blanco E. Functionalized micellar system for cancer targeted delivery. Pharm Res. 2007;24:1029–46.

    Article  PubMed  CAS  Google Scholar 

  125. Lee HS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicellular phase II trial of genexol-PM, a cremophore-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.

    Article  PubMed  CAS  Google Scholar 

  126. Svenson S. Clinical translation of nanomedicines. Curr Opin Sol St M. 2012;1–7.

  127. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumor activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92:1240–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer. 2005;93:678–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful and would like to acknowledge the University Grants Commission (UGC) New Delhi, India and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi India, for providing research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gothwal, A., Khan, I. & Gupta, U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm Res 33, 18–39 (2016). https://doi.org/10.1007/s11095-015-1784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1784-1

KEY WORDS

Navigation