Skip to main content

Advertisement

Log in

Microneedle-Mediated Delivery of Copper Peptide Through Skin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Copper peptide (GHK-Cu) plays an important role in skin regeneration and wound healing. However, its skin absorption remains challenging due to its hydrophilicity. Here we use polymeric microneedle array to pre-treat skin to enhance GHK-Cu skin penetration.

Methods

Two in vitro skin models were used to assess the capability of microneedles in facilitating skin delivery of GHK-Cu. Histological assay and confocal laser scanning microscopy were performed to characterize and quantify the microconduits created by the microneedles inside skin. Cellular and porcine models were used to evaluate the safety of microneedle-assisted copper peptide delivery.

Results

The depth and percentage of microneedle penetration were correlated with application forces, which in turn influenced the extent of enhancement in the skin permeability of GHK-Cu. In 9 h, 134 ± 12 nanomoles of peptide and 705 ± 84 nanomoles of copper permeated though the microneedle treated human skin, while almost no peptide or copper permeated through intact human skin. No obvious signs of skin irritation were observed with the use of GHK-Cu after microneedle pretreatment.

Conclusions

It is effective and safe to enhance the skin permeation of GHK-Cu by using microneedles. This approach may be useful to deliver similar peptides or minerals through skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

GHK:

Glycyl-L-histidyl-L-lysyl

GHK-Cu:

Copper peptide

HaCaT:

Human adult low calcium high temperature

HDF:

Human dermal fibroblasts

HPLC:

High performance liquid chromatography

MN:

Microneedle

MSS:

Microchannel Skin System

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PBS:

Phosphate buffered saline

REFERENCES

  1. Pickart L, Thaler MM. Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nat New Biol. 1973;243(124):85–7.

    CAS  PubMed  Google Scholar 

  2. Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP. Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS Lett. 1988;238(2):343–6.

    Article  CAS  PubMed  Google Scholar 

  3. Buffoni F, Pino R, Dal Pozzo A. Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts. Arch Int Pharmacodyn Ther. 1995;330(3):345–60.

    CAS  PubMed  Google Scholar 

  4. Wegrowski Y, Maquart FX, Borel JP. Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. Life Sci. 1992;51(13):1049–56.

    Article  CAS  PubMed  Google Scholar 

  5. Siméon A, Emonard H, Hornebeck W, Maquart F-X. The tripeptide-copper complex glycyl-L-histidyl-L- lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci. 2000;67(18):2257–65.

    Article  PubMed  Google Scholar 

  6. Siméon A, Wegrowski Y, Bontemps Y, Maquart FX. Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu(2+). J Investig Dermatol. 2000;115(6):962–8.

    Article  PubMed  Google Scholar 

  7. McCormack MC, Nowak KC, Koch RJ. The effect of copper tripeptide and tretinoin on growth factor production in a serum-free fibroblast model. Arch Facial Plast Surg. 2001;3(1):28–32.

    CAS  PubMed  Google Scholar 

  8. Kang YA, Choi HR, Na JI, Huh CH, Kim MJ, Youn SW, et al. Copper-GHK increases integrin expression and p63 positivity by keratinocytes. Arch Dermatol Res. 2009;301(4):301–6.

    Article  CAS  PubMed  Google Scholar 

  9. Choi HR, Kang YA, Ryoo SJ, Shin JW, Na JI, Huh CH, et al. Stem cell recovering effect of copper-free GHK in skin. J Pept Sci. 2012;18(11):685–90.

    Article  CAS  PubMed  Google Scholar 

  10. Pickart L. The human tri-peptide GHK and tissue remodeling. J Biomater Sci Polym Ed. 2008;19(8):969–88.

    Article  CAS  PubMed  Google Scholar 

  11. Hostynek JJ, Dreher F, Maibach HI. Human skin retention and penetration of a copper tripeptide in vitro as function of skin layer towards anti-inflammatory therapy. Inflamm Res. 2010;59(11):983–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Philips N, Hwang H, Chauhan S, Leonardi D, Gonzalez S. Stimulation of cell proliferation and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect Tissue Res. 2010;51(3):224–9.

    Article  CAS  PubMed  Google Scholar 

  13. Maquart FX, Bellon G, Chaqour B, Wegrowski J, Patt LM, Trachy RE, et al. In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds. J Clin Invest. 1993;92(5):2368–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gorouhi F, Maibach HI. Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci. 2009;31(5):327–45.

    Article  CAS  PubMed  Google Scholar 

  15. Lamb J. The connectivity map: a new tool for biomedical research. Nat Rev Cancer. 2007;7(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  16. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010;107(33):14621–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Campbell JD, McDonough JE, Zeskind JE, Hackett TL, Pechkovsky DV, Brandsma CA, et al. A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Med. 2012;4(8):67.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Harvey L. Mineral bioavailability. Nutr Food Sci. 2001;31(4):179–82.

    Article  Google Scholar 

  19. Driscoll MS, Kwon EK, Skupsky H, Kwon SY, Grant-Kels JM. Nutrition and the deleterious side effects of nutritional supplements. Clin Dermatol. 2010;28(4):371–9.

    Article  PubMed  Google Scholar 

  20. Chan S, Gerson B, Subramaniam S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med. 1998;18(4):673–85.

    CAS  PubMed  Google Scholar 

  21. Araya M, Pena C, Pizarro F, Olivares M. Gastric response to acute copper exposure. Sci Total Environ. 2003;303(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  22. Reynolds JEF, Prasad AB, editors. Martindale, the extra pharmacopoeia. 28th ed. London: The Pharmaceutical Press; 1982.

  23. Pickart L, Freedman JH, Loker WJ, Peisach J, Perkins CM, Stenkamp RE, et al. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature. 1980;288(5792):715–7.

    Article  CAS  PubMed  Google Scholar 

  24. Pickart L. The need for improved skin regenerative copper peptides. Skinbiology.com. 2014. http://skinbiology.com/copper-peptides-need-for-improved.html. Accessed 17 Apr 2014.

  25. Mulder GD, Patt LM, Sanders L, Rosenstock J, Altman MI, Hanley ME, et al. Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper. Wound Repair Regen. 1994;2(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  26. Bishop JB, Phillips LG, Mustoe TA, VanderZee AJ, Wiersema L, Roach DE, et al. A prospective randomized evaluator-blinded trial of two potential wound healing agents for the treatment of venous stasis ulcers. J Vasc Surg. 1992;16(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  27. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target. 2013;21(7):611–29.

    Article  CAS  PubMed  Google Scholar 

  29. Donnelly R, Singh T, Tunney M, Morrow DJ, McCarron P, O’Mahony C, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Duan D, Moeckly C, Gysbers J, Novak C, Prochnow G, Siebenaler K, et al. Enhanced delivery of topically-applied formulations following skin pre-treatment with a hand-applied, plastic microneedle array. Curr Drug Deliv. 2011;8:557–65.

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Qiu Y, Zhang S, Qin G, Gao Y. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices. 2008;10(5):601–10.

    Article  CAS  PubMed  Google Scholar 

  33. Mohammed YH, Yamada M, Lin LL, Grice JE, Roberts MS, Raphael AP, et al. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin. PLoS One. 2014;9(7):e101956.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  CAS  PubMed  Google Scholar 

  35. Mah CS, Kochhar JS, Ong PS, Kang L. A miniaturized flow-through cell to evaluate skin permeation of endoxifen. Int J Pharm. 2013;441(1–2):433–40.

    Article  CAS  PubMed  Google Scholar 

  36. Kochhar JS, Quek TC, Soon WJ, Choi J, Zou S, Kang L. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hostynek JJ, Dreher F, Maibach HI. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm Res. 2011;60(1):79–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tinggi U, Maher W. Determination of trace elements in biological tissues by aluminum block digestion and spike-height flame atomic absorption spectrometry. Microchem J. 1986;33(3):304–8.

    Article  CAS  Google Scholar 

  39. Huang PJ, Huang YC, Su MF, Yang TY, Huang JR, Jiang CP. In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomed Laser Surg. 2007;25(3):183–90.

    Article  CAS  PubMed  Google Scholar 

  40. Pollard JD, Quan S, Kang T, Koch RJ. Effects of copper tripeptide on the growth and expression of growth factors by normal and irradiated fibroblasts. Arch Facial Plast Surg. 2005;7(1):27–31.

    Article  PubMed  Google Scholar 

  41. Oh JH, Park HH, Do KY, Han M, Hyun DH, Kim CG, et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm. 2008;69(3):1040–5.

  42. Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008;128(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wu XM, Todo H, Sugibayashi K. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. Int J Pharm. 2006;316(1–2):102–8.

    Article  CAS  PubMed  Google Scholar 

  44. Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm. 2010;391(1–2):7–12.

    Article  CAS  PubMed  Google Scholar 

  45. Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155–63.

    Article  PubMed  Google Scholar 

  46. Park JH, Yoon YK, Choi SO, Prausnitz MR, Allen MG. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng. 2007;54(5):903–13.

    Article  PubMed  Google Scholar 

  47. Kochhar JS, Goh WJ, Chan SY, Kang L. A simple method of microneedle array fabrication for transdermal drug delivery. Drug Dev Ind Pharm. 2012;39(2):299–309.

    Article  PubMed  Google Scholar 

  48. Tran S-L, Puhar A, Ngo-Camus M, Ramarao N. Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of bacillus cereus. PLoS ONE. 2011;6(9):e22876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Marieb EN, Hoehn K. Human anatomy & physiology. Boston: Pearson; 2007.

  50. Bachhav YG, Summer S, Heinrich A, Bragagna T, Böhler C, Kalia YN. Effect of controlled laser microporation on drug transport kinetics into and across the skin. J Control Release. 2010;146:31–6.

    Article  CAS  PubMed  Google Scholar 

  51. Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 2013;30(4):1099–109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Robert LB, Jeffrey JY, Margaret EKK. Determination of percutaneous absorption by in vitro techniques. Percutaneous Absorption: CRC Press; 2005. p. 265–9.

  53. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.

    Article  CAS  PubMed  Google Scholar 

  54. Hostynek JJ. Factors determining percutaneous metal absorption. Food Chem Toxicol. 2003;41(3):327–45.

    Article  CAS  PubMed  Google Scholar 

  55. Endo T, Miyagi M, Ujiie A. Simultaneous determination of glycyl-L-histidyl-L-lysine and its metabolite, L-histidyl-L-lysine, in rat plasma by high-performance liquid chromatography with post-column derivatization. J Chromatogr B Biomed Sci Appl. 1997;692(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  56. Gibbs S. In vitro irritation models and immune reactions. Skin Pharmacol Physiol. 2009;22(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  57. Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations—an overview. Skin Pharmacol Appl Ski Physiol. 2000;13(5):229–34.

    Article  CAS  Google Scholar 

  58. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012;29:170–7.

    Article  PubMed  Google Scholar 

  59. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. 2015. http://www.nal.usda.gov/fnic/DRI/DRI_Vitamin_A/vitamin_a_full_report.pdf. Accessed 19 Jan 2015.

  60. WHO/FAO/IAEA. Trace elements in human nutrition and health. 2015. http://whqlibdoc.who.int/publications/1996/9241561734_eng_fulltext.pdf. Accessed 19 Jan 2015.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The study is supported by a Singapore EDB-IPP grant (grant number: RL2012-035). We thank Siew Ping Yeo from 3M Innovation Singapore for helping with the scanning electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Low, Y.S.J., Chong, H.P. et al. Microneedle-Mediated Delivery of Copper Peptide Through Skin. Pharm Res 32, 2678–2689 (2015). https://doi.org/10.1007/s11095-015-1652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1652-z

KEY WORDS

Navigation