Skip to main content
Log in

Immunomodulatory Effects of a Low-Dose Clarithromycin-Based Macrolide Solution Pressurised Metered Dose Inhaler

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of this study was to assess the effects of low-dose clarithromycin, formulated as solution pressurized metered dose inhaler, following deposition on the Calu-3 respiratory epithelial cells.

Methods

Clarithromycin was deposited on the air-interface culture of Calu-3 cells using a modified Andersen cascade impactor. Transport of fluorescein-Na, production of mucus and interleukin-8 release from Calu-3 cells following stimulation with transforming growth factor-β and treatment with clarithromycin was investigated.

Results

The deposition of clarithromycin had significant effect on the permeability of fluorescein-Na, suggesting that the barrier integrity was improved following a short-term treatment with clarithromycin (apparent permeability values were reduced to 3.57 × 10-9 ± 2.32 × 10-9 cm.s-1, compared to 1.14 × 10-8 ± 4.30 × 10-8 cm.s-1 for control). Furthermore, the amount of mucus produced was significantly reduced during the course of clarithromycin treatment. The concentration of interleukin-8 secreted from Calu-3 cells following stimulation with transforming growth factor-β resulted in significantly lower level of interleukin-8 released from the cells pre-treated with clarithromycin (5.2 ± 0.5 ng.ml-1 clarithromycin treated vs. 7.7 ± 0.8 ng.ml-1 control, respectively).

Conclusions

Our data demonstrate that treatment with clarithromycin decreases the paracellular permeability of epithelial cells, mucus secretion and interleukin-8 release and therefore, inhaled clarithromycin holds potential as an anti-inflammatory therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

ACI:

Andersen cascade impactor

AIC:

Air interface culture

CF:

Cystic fibrosis

COPD:

Chronic obstructive pulmonary disease

ELISA:

Enzyme-linked immunosorbent assay

FEV1 :

Forced expiratory volume in 1 second

flu-Na:

Fluorescein sodium

FVC:

Forced vital capacity

HBSS:

Hank’s Balanced Salt Solution

HFA:

Hydrofluoroalkane

IC50 :

Half maximal inhibitory concentration

IL:

Interleukin

JAMA:

Junction adhesion molecule-A

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PBS:

Phosphate buffer solution

pMDIs:

Pressurised metered dose inhalers

RGB:

Red-green-blue

RSV:

Respiratory syncytial virus

TEER:

Transepithelial electrical resistance

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

References

  1. Jaffé A, Bush A. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmon. 2001;31:464–73.

    Article  Google Scholar 

  2. Hand WL, Hand DL, King-Thompson NL. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1990;34(5):863–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakamura H, et al. Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother. 1998;42(6):1499–502.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Davies RJ. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J. 1995;8(9):1451–7.

    CAS  PubMed  Google Scholar 

  5. Konno S, Adachi M, Asano K, Okamoto K, Takahashi T. Anti-allergic activity of roxithromycin: inhibition of interleukin-5 production from mouse T lymphocytes. Life Sci. 1993;52(4):L25–30.

    Article  Google Scholar 

  6. Hardy RD, Rios AM, Chavez-Bueno S, Jafri HS, Hatfield J, Rogers BB, et al. Antimicrobial and immunologic activities of clarithromycin in a murine model of Mycoplasma pneumoniae-induced pneumonia. Antimicrob Agents Chemother. 2003;47(5):1614–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, et al. Erythromycin and clarithromycin attenuate cytokine-induced endothelin-1 expression in human bronchial epithelial cells. Eur Respir J. 1998;12(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  9. Oda H, Kadota J, Kohno S, Hara K. Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest. 1994;106(4):1116–23.

    Article  CAS  PubMed  Google Scholar 

  10. Kanai K, Asano K, Hisamitsu T, Suzaki H. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro. Mediat Inflamm. 2004;13(5–6):313–9.

    Article  CAS  Google Scholar 

  11. Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004;125(2 Suppl):41S–50. quiz 51S.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Boado YS, Rubin BK. Macrolides as immunomodulatory medications for the therapy of chronic lung diseases. Curr Opin Pharmacol. 2008;8(3):286–91.

    Article  CAS  PubMed  Google Scholar 

  13. Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, et al. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother. 2002;49(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  14. Kanoh S, Rubin BK. Mechanism of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pukhalsky AL, Shmarina GV, Kapranov NI, Kokarovtseva SN, Pukhalskaya D, Kashirskaja NJ. Anti-inflammatory and immunomodulating effects of clarithromycin in patients with cystic fibrosis lung disease. Mediat Inflamm. 2004;13(2):111–7.

    Article  CAS  Google Scholar 

  16. Ordonez CL, Stulbarg M, Grundland H, Liu JT, Boushey HA. Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: a pilot study. Pediatr Pulmonol. 2001;32(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson P, Schechter MS, Sly PD, Winfield K, Smith J, Brennan S, et al. Clarithromycin therapy for patients with cystic fibrosis: a randomized controlled trial. Pediatr Pulmonol. 2012;47(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–7.

    Article  CAS  PubMed  Google Scholar 

  19. Valery PC, Morris PS, Byrnes CA, Grimwood K, Torzillo PJ, Bauert PA, et al. Long-term azithromycin for Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med. 2013;1(8):610–20.

    Article  CAS  PubMed  Google Scholar 

  20. Serisier DJ, Martin ML, McGuckin MA, et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non–cystic fibrosis bronchiectasis: The bless randomized controlled trial. JAMA. 2013;309(12):1260–7.

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee D, Khair OA, Honeybourne D. The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD. Respir Med. 2005;99(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  22. Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178(11):1139–47.

    Article  CAS  PubMed  Google Scholar 

  23. Beigelman A, Gunsten S, Mikols CL, Vidavsky I, Cannon CL, Brody SL, et al. Azithromycin attenuates airway inflammation in a noninfectious mouse model of allergic asthma. Chest. 2009;136(2):498–506.

    Article  PubMed  Google Scholar 

  24. Ekici A, Ekici M, Erdemoglu AK. Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma. J Asthma Official J Assoc Care Asthma. 2002;39(2):181–5.

    Article  CAS  Google Scholar 

  25. Jouneau S, Kerjouan M, Caulet-Maugendre S, Guillot S, Meunier C, Desrues B, et al. Clarithromycin stops lung function decline in airway-centered interstitial fibrosis. Respir Int Rev Thoracic Dis. 2013;85(2):156–9.

    CAS  Google Scholar 

  26. Yokota S, Okabayashi T, Hirakawa S, Tsutsumi H, Himi T, Fujii N. Clarithromycin suppresses human respiratory syncytial virus infection-induced Streptococcus pneumoniae adhesion and cytokine production in a pulmonary epithelial cell line. Mediat Inflamm. 2012;2012:528568.

    Article  Google Scholar 

  27. Amado-Rodriguez L, Gonzalez-Lopez A, Lopez-Alonso I, Aguirre A, Astudillo A, Batalla-Solis E, et al. Anti-inflammatory effects of clarithromycin in ventilator-induced lung injury. Respir Res. 2013;14(1):52.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Metersky ML, Ma A, Houck PM, Bratzler DW. Antibiotics for bacteremic pneumonia: Improved outcomes with macrolides but not fluoroquinolones. Chest. 2007;131(2):466–73.

    Article  CAS  PubMed  Google Scholar 

  29. Shinkai M, Foster GH, Rubin BK. Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2005;290(1):L75–85.

    Article  PubMed  Google Scholar 

  30. Shinkai M, López-Boado YS, Rubin BK. Clarithromycin has an immunomodulatory effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. J Antimicrob Chemother. 2007;59(6):1096–101.

    Article  CAS  PubMed  Google Scholar 

  31. Labiris N, Dolovich M. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmaco. 2003;56(6):588–99.

    Article  CAS  Google Scholar 

  32. Courrier H, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev™ Ther Drug Carrier Syst. 2002;19(4–5):425–98.

    Article  CAS  Google Scholar 

  33. Zhu B, Traini D, Chan H-K, Young PM. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers. Drug Dev Ind Pharm. 2013;39(11):1625–37.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu B, Traini D, Lewis DA, Young P. The solid-state and morphological characteristics of particles generated from solution-based metered dose inhalers: Influence of ethanol concentration and intrinsic drug properties. Colloids Surf A Physicochem Eng Asp. 2014;443:345–55.

    Article  CAS  Google Scholar 

  35. Gupta A, Stein SW, Myrdal PB. Balancing ethanol cosolvent concentration with product performance in 134a-based pressurized metered dose inhalers. J Aerosol Med. 2003;16(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  36. Saadat A, Zhu B, Haghi M, King G, Colombo G, Young P, et al. The Formulation, chemical and physical characterization of clarithromycin-based macrolide solution pressurised metered dose inhaler Journal of Pharacy and Pharmacology. 2013;In Press.

  37. Fiegel J, Ehrhardt C, Schaefer UF, Lehr CM, Hanes J. Large porous particle impingement on lung epithelial cell monolayers–toward improved particle characterization in the lung. Pharm Res. 2003;20(5):788–96.

    Article  CAS  PubMed  Google Scholar 

  38. Haghi M, Traini. D, Young P. In vitro cell integrated impactor deposition methodology for the study of aerodynamically relevant size fractions from commercial pressurised metered dose inhalers Pharm Res. 2013;In Press.

  39. Scalia S, Haghi M, Losi V, Trotta V, Young PM, Traini D. Quercetin solid lipid microparticles: A flavonoid for inhalation lung delivery. Eur J Pharm Sci. 2013;49(2):278–85.

    Article  CAS  PubMed  Google Scholar 

  40. Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, et al. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol. 2007;584(1):245–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Haghi M, Young PM, Traini D, Jaiswal R, Gong J, Bebawy M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36(10):1207–14.

    Article  CAS  PubMed  Google Scholar 

  42. Vllasaliu D, Fowler R, Garnett M, Eaton M, Stolnik S. Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison. Biochem Biophys Res Commun. 2011;415(4):579–85.

    Article  CAS  PubMed  Google Scholar 

  43. Tewes F, Paluch KJ, Tajber L, Gulati K, Kalantri D, Ehrhardt C, et al. Steroid/mucokinetic hybrid nanoporous microparticles for pulmonary drug delivery. Eur J Pharm Biopharm. 2013;85(3 Pt A):604–13.

    Article  CAS  PubMed  Google Scholar 

  44. Mauad T, Dolhnikoff M. Pathologic similarities and differences between asthma and chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2008;14(1):31–8. doi:10.1097/MCP.0b013e3282f19846.

    Article  PubMed  Google Scholar 

  45. Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int Off J Jpn Soc Allergol. 2008;57(1):1–10.

    Article  CAS  Google Scholar 

  46. Asgrimsson V, Gudjonsson T, Gudmundsson GH, Baldursson O. Novel Effects of Azithromycin on Tight Junction Proteins in Human Airway Epithelia. Antimicrob Agents Chemother. 2006;50(5):1805–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Randell SH, Boucher RC. Effective Mucus Clearance Is Essential for Respiratory Health. Am J Respir Cell Mol Biol. 2006;35(1):20–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y. In Vivo and In Vitro Effects of Macrolide Antibiotics on Mucus Secretion in Airway Epithelial Cells. Am J Respir Crit Care Med. 2003;168(5):581–7.

    Article  PubMed  Google Scholar 

  49. Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, et al. Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol. 2003;285(4):L847–53.

    Article  CAS  PubMed  Google Scholar 

  50. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  51. Tsang KW, Ho PI, Chan KN, Ip MS, Lam WK, Ho CS, et al. A pilot study of low-dose erythromycin in bronchiectasis. Eur Respir J. 1999;13(2):361–4.

    Article  CAS  PubMed  Google Scholar 

  52. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P. Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun. 2006;350(4):977–82.

    Article  CAS  PubMed  Google Scholar 

  53. Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, et al. Erythromycin Modulates IL-8 Expression in Normal and Inflamed Human Bronchial Epithelial Cells. Am J Respir Crit Care Med. 1997;156(1):266–71.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP120100251). A/Professor Young is the recipient of an Australian Research Council Future Fellowship (project number FT110100996). A/Professor Traini is the recipient of an Australian Research Council Future Fellowship (project number FT12010063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Traini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghi, M., Saadat, A., Zhu, B. et al. Immunomodulatory Effects of a Low-Dose Clarithromycin-Based Macrolide Solution Pressurised Metered Dose Inhaler. Pharm Res 32, 2144–2153 (2015). https://doi.org/10.1007/s11095-014-1605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1605-y

KEY WORDS

Navigation