Skip to main content
Log in

The Glucose-Lowering Potential of Exenatide Delivered Orally via Goblet Cell- Targeting Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Exenatide, a potent insulinotropic agent, can be used for the treatment of non-insulin-dependent diabetes mellitus. However, the need for frequent injections seriously limits its therapeutic utility. The aim of present report was to develop an orally available exenatide formulation using goblet cell-targeting nanoparticles (NPs).

Method

The exenatide-loaded nanoparticles were prepared with modified chitosan which was conjugated with a goblet cell-target peptide, CSKSSDYQC (CSK) peptide.

Results

The CSK-chitosan nanoparticles shown reduced chitosan toxicity and enhanced the permeation of drugs across the Caco-2/HT-29 co-cultured cell monolayer, which simulated the intestinal epithelium. Following the oral administration of near-infrared fluorescent probe Cy-7-loaded NPs to mice, the distribution of the drugs was investigated with a near-infrared in vivo image system (FX Pro, Bruker, USA). The results showed that Cy-7 fluorescence disseminated from the oesophagus, then to stomach and small intestine and then was absorbed into hepatic, finally into the bladder; over time, Cy-7 was metabolized and excreted. The bioavailability of the modified nanoparticles was found to be 1.7-fold higher compared with the unmodified ones, and the hypoglycemic effect was also better.

Conclusion

CSK peptide-modified chitosan nanoparticles could be a potential therapeutics for Type II diabetes patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gedulin BR, Smith PA, Jodka CM, Chen K, Bhavsar S, Nielsen LL, et al. Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration. Int J Pharm. 2008;356:231–8.

    Article  CAS  PubMed  Google Scholar 

  2. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267:7402–5.

    CAS  PubMed  Google Scholar 

  3. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268:19650–5.

    CAS  PubMed  Google Scholar 

  4. Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs. 2005;19:165–77.

    Article  CAS  PubMed  Google Scholar 

  5. Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials. 2012;33:1573–82.

    Article  CAS  PubMed  Google Scholar 

  6. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24:979–93.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Fan X, Zhang Q, Sun F, Li X, Xiong C, Zhang C, Fan H. Chitosan-plasmid DNA nanoparticles encoding small hairpin RNA targeting MMP-3 and −13 to inhibit the expression of dedifferentiation related genes in expanded chondrocytes. J Biomed Mater Res A. 2013.

  8. Sonaje K, Lin K-J, Wey S-P, Lin C-K, Yeh T-H, Nguyen H-N, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010;31:6849–58.

    Article  CAS  PubMed  Google Scholar 

  9. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014.

    Article  CAS  Google Scholar 

  10. Shiraishi S, Imai T, Otagiri M. Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in vivo/in vitro evaluation. J Control Release. 1993;25:217–25.

    Article  CAS  Google Scholar 

  11. Jin C-H, Chae SY, Son S, Kim TH, Um KA, Youn YS, et al. A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. J Control Release. 2009;133:172–7.

    Article  CAS  PubMed  Google Scholar 

  12. Roger E, Lagarce F, Garcion E, Benoit J-P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (London, U K). 2010;5:287–306.

    Article  CAS  Google Scholar 

  13. Kang SK, Woo JH, Kim MK, Woo SS, Choi JH, Lee HG, et al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol. 2008;135:210–6.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta V, Doshi N, Mitragotri S. Permeation of insulin, calcitonin and exenatide across Caco-2 monolayers: measurement using a rapid, 3-day system. PLoS One. 2013;8:e57136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wangand Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia. 2002;45:1263–73.

    Article  Google Scholar 

  16. Nguyen HN, Wey SP, Juang JH, Sonaje K, Ho YC, Chuang EY, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 2011;32:2673–82.

    Article  CAS  PubMed  Google Scholar 

  17. Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci. 2000;89:63–75.

    Article  CAS  PubMed  Google Scholar 

  18. Behrens I, Pena AI, Alonso MJ, Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res. 2002;19:1185–93.

    Article  CAS  PubMed  Google Scholar 

  19. Schipper NG, Varum KM, Stenberg P, Ocklind G, Lennernas H, Artursson P. Chitosans as absorption enhancers of poorly absorbable drugs. 3: influence of mucus on absorption enhancement. Eur J Pharm Sci. 1999;8:335–43.

    Article  CAS  PubMed  Google Scholar 

  20. Deliolanisand NC, Ntziachristos V. Fluorescence molecular tomography of brain tumors in mice. Cold Spring Harb Protocol. 2013;2013:438–43.

    Google Scholar 

  21. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release. 2011;152:402–10.

    Article  CAS  PubMed  Google Scholar 

  22. Gallwitz B. The evolving place of incretin-based therapies in type 2 diabetes. Pediatr Nephrol. 2010;25:1207–17.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept. 2004;117:77–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, C., Liang, R. et al. The Glucose-Lowering Potential of Exenatide Delivered Orally via Goblet Cell- Targeting Nanoparticles. Pharm Res 32, 1017–1027 (2015). https://doi.org/10.1007/s11095-014-1513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1513-1

KEY WORDS

Navigation