Skip to main content
Log in

Predicting Drug Substances Autoxidation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chemical degradation and stability in formulation is a recurrent issue in pharmaceutical development of drugs. The objective of the present study was to develop an in silico risk assessment of active pharmaceutical ingredients (APIs) stability with respect to autoxidation.

Methods

The chemical degradation by autoxidation of a diverse series of APIs has been investigated with molecular modelling tools. A set of 45 organic compounds was used to test and validate the various computational settings. Aiming to devise a methodology that could reliably perform a risk assessment for potential sensibility to autoxidation, different types of APIs, known for their autoxidation history were inspected. To define the level of approximation needed, various density functional theory (DFT) functionals and settings were employed and their accuracy and speed were compared.

Results

The Local Density Approximation (LDA) gave the fastest results but with a substantial deviation (systematic over-estimation) to known experimental values. The Perdew-Burke-Ernzerhof (PBE) settings appeared to be a good compromise between speed and accuracy.

Conclusions

The present methodology can now be confidently deployed in pharmaceutical development for systematic risk assessment of drug stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gardner CR, Walsh TC, Almarsson O. Drugs as materials: valuing physical form in drug discovery. Nat Rev Drug Discov. 2004;3:926–34.

    Article  CAS  PubMed  Google Scholar 

  2. Palucki M, Higgins JD, Kwong E, Templeton AC. Strategies at the interface of drug discovery and development: early optimization of the solid state phase and preclinical toxicology formulation for potential drug candidates. J Med Chem. 2010;53(16):5897–905.

    Article  CAS  PubMed  Google Scholar 

  3. Gorman EM, Padden BE, Munson EJ. Stability: Physical and Chemical. 2008; Wiley & Sons Inc. in Gad SC “Preclinical Development handbook: ADME and biopharmaceutical properties” Chapter 16, 545–570

  4. Florence AT, Attwood D. Physicochemical principles of pharmacy. 5th ed. London: Pharmaceutical Press; 2011.

    Google Scholar 

  5. Bundgaard H, Larsen C. Piperazinedione formation from reaction of ampicillin with carbohydrates and alcohols in aqueous solutions. Int J Pharm. 1979;3:1–11.

    Article  CAS  Google Scholar 

  6. Baertschi SW, Pharmaceutical stress testing: predicting drug degradation. Taylor and Françis informa vol 153 Healthcare; 2005

  7. Guidance for Industry Q1A(R2) Stability testing of new drug substances and products U.S. Department of health and human services food and drug administration, November 2003

  8. Kieffer J, Bremond E, Lienard L, Boccardi G. In silico assessment of drug substances chemical stability. J Mol Struct THEOCHEM. 2010;954:75–9.

    Article  CAS  Google Scholar 

  9. Parr RG, Yang W. Density-functional theory of atoms and molecules. New York: Oxford University Press; 1989.

    Google Scholar 

  10. Boccardi G, Deleuze C, Gachon M, Palmisano G, Vergnaud JP. Autoxidation of tetrazepam in tablets: prediction of the degradation impurities from the oxidative behaviour in solution. J Pharm Sci. 1992;81:183–5.

    Article  CAS  PubMed  Google Scholar 

  11. P. Harmon and G. Boccardi, Oxidative susceptibility testing, in: S. W. Baertschi, K. M. Alsante, R.R. Red, ed., Pharmaceutical stress testing - predicting drug degradation, Informa, 2011.

  12. Blanksby SJ, Ellison GB. Bond dissociation energies of organic molecules. Acc Chem Res. 2002;36:255–63.

    Article  Google Scholar 

  13. Sharp TR. Calculated carbon–hydrogen bond dissociation enthalpies for predicting oxidative susceptibility of drug substance molecules. Int J Pharm. 2011;418:304–17.

    Article  CAS  PubMed  Google Scholar 

  14. Rocha GB, Freire RO, Simas AM, Stewart JJP. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem. 2006;27:1101–11. doi:10.1002/jcc.20425.

    Article  CAS  PubMed  Google Scholar 

  15. Michael J. S. Dewar,* Eve G. Zoebisch, Eamonn F. Healy, and James J. P. Stewart AM1: A new general purpose quantum mechanical molecular model’ J. Am.Chem.Soc 107, 3902-3909

  16. Gryn’ova G, Hodgson JL, Coote M. Revising the mechanism of polymer autooxidation. Org Biomol Chem. 2011;9:480–90.

    Article  PubMed  Google Scholar 

  17. Benson SW. Effects of resonance and structure on the thermochemistry of organic peroxy radicals and the kinetics of combustion reactions. J Am Chem Soc. 1965;87:972–9.

    Article  CAS  Google Scholar 

  18. Bolland JL, Gee G. Trans Faraday Soc. 1946;42:244.

    Article  CAS  Google Scholar 

  19. Reid DL, Calvitt JC, Zell MT, Miller KG, Kingsmill CA. Early prediction of pharmaceutical oxidation pathways by computational chemistry and forced degradation. Pharm Res. 2004;21(9):1708–17.

    Article  CAS  PubMed  Google Scholar 

  20. Jonsson M, Wayner DDM, Armstrong DA, Yu D, Rauk A. On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine. J Chem Soc Perkin Trans. 1998;2:1967–72.

    Article  Google Scholar 

  21. Leopoldini M, Marino T, Russo N, Toscano M. Antioxidant properties of phenolic compounds: H-Atom versus electron transfer mechanism. J Phys Chem A. 2004;108:4916–22.

    Article  CAS  Google Scholar 

  22. Alves CN, Borges RS, Da Silva ABF. Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int J Quantum Chem. 2006;106:2617–23.

    Article  CAS  Google Scholar 

  23. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136:864–71.

    Article  Google Scholar 

  24. Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A. 1979;76:6062–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756.

    Article  CAS  Google Scholar 

  26. Delley B. Time dependent density functional theory with DMol3. J Phys Condens Matter. 2010;22:384208.

    Article  CAS  PubMed  Google Scholar 

  27. Accelrys Software, Inc. Accelrys 2013

  28. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92:508.

    Article  CAS  Google Scholar 

  29. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200–11.

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof MG. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.

    Article  CAS  PubMed  Google Scholar 

  31. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  32. Lewin JL, Cramer CJ. Rapid quantum mechanical models for the computational estimation of C-H bond dissociation energies as a measure of metabolic stability mol. Pharm. 2004;1:128–35.

    CAS  Google Scholar 

  33. Blanksby SJ, Ellison GB. Bond dissociation of organic molecules. Acc Chem Res. 2003;36:255–63.

    Article  CAS  PubMed  Google Scholar 

  34. Florey ed, Analytical profiles of drug substances Vol 14, New York Academic Press 1985, 59

  35. Florey ed, Analytical profiles of drug substances Vol 20, New York Academic Press 1991, 405

  36. Baertschi SW. Pharmaceutical stress testing: predicting drug degradation. Taylor and Françis informa. Healthc. 2005;153:100.

    Google Scholar 

  37. Florey ed, Analytical profiles of drug substances Vol 18, New York Academic Press 1989; 245

  38. Albini A, Fasani E. Drugs: photochemistry and photostability. An overview and practical problems. Cambridge: The royal Society of Chemistry; 1998. p. 21.

    Book  Google Scholar 

  39. Sanofi private communication

  40. Florey ed, Analytical profiles of drug substances Vol 1, New York Academic Press 1972:93

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We wish to express our deep acknowledgement to several individuals for assistance encouragement and advice: Jean-René Authelin, Antonio Guerreiro, Jérome Kieffer, Nicolas Marchand and Guy Rossey for project initiation and scientific inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lienard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lienard, P., Gavartin, J., Boccardi, G. et al. Predicting Drug Substances Autoxidation. Pharm Res 32, 300–310 (2015). https://doi.org/10.1007/s11095-014-1463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1463-7

KEY WORDS

Navigation