Skip to main content

Advertisement

Log in

Acid-Responsive Polymeric Nanocarriers for Topical Adapalene Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The acne skin is characteristic of a relatively lower pH microenvironment compared to the healthy skin. The aim of this work was to utilize such pH discrepancy as a site-specific trigger for on-demand topical adapalene delivery.

Methods

The anti-acne agent, adapalene, was encapsulated in acid-responsive polymer (Eudragit® EPO) nanocarriers via nanoprecipitation. The nanocarriers were characterized in terms of particle size, surface morphology, drug-carrier interaction, drug release and permeation.

Results

Adapalene experienced a rapid release at pH 4.0 in contrast to that at pH 5.0 and 6.0. The permeation study using silicone membrane revealed a significant higher drug flux from the nanocarrier (6.5 ± 0.6 μg.cm−2.h−1) in comparison to that (3.9 ± 0.4 μg.cm−2.h−1) in the control vehicle (Transcutol®). The in vitro pig skin tape stripping study showed that at 24 h post dose-application the nanocarrier delivered the same amount of drug to the stratum corneum as the positive control vehicle did.

Conclusions

The acid-responsive nanocarriers hold promise for efficient adapalene delivery and thus improved acne therapy.

pH liable nanocarriers enhance the adapalene delivery to acne skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High performance liquid chromatography

MWCO:

Molecular weight cut-off

NMR:

Nuclear magnetic resonance

PVA:

Poly(vinyl alcohol)

SC:

Stratum corneum

SDS:

Sodium dodecyl sulphate

THF:

Tetrahydrofuran

Transcutol®:

Diethylene glycol monoethyl ether

XRD:

X-ray diffraction

REFERENCES

  1. Taylor M, Gonzalez M, Porter R. Pathways to inflammation: acne pathophysiology. Eur J Dermatol. 2011;21(3):323–33.

    PubMed  CAS  Google Scholar 

  2. Greenman J. Follicular pH and the development of acne. Int J Dermatol. 1981;20(10):656–8.

    Article  PubMed  CAS  Google Scholar 

  3. Holland DB, Cunliffe WJ. Skin surface and open comedone pH in acne patients. Acta Derm Venereol. 1983;63(2):155–8.

    PubMed  CAS  Google Scholar 

  4. Shroot B, Michel S. Pharmacology and chemistry of adapalene. J Am Acad Dermatol. 1997;36(6):S96–103.

    Article  PubMed  CAS  Google Scholar 

  5. Shroot B. Pharmacodynamics and pharmacokinetics of topical adapalene. J Am Acad Dermatol. 1998;39(2):S17–24.

    Article  PubMed  CAS  Google Scholar 

  6. Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327–48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  PubMed  CAS  Google Scholar 

  8. Trichard L, Delgado-Charro MB, Guy RH, Fattal E, Bochot A. Novel beads made of alpha-cyclodextrin and oil for topical delivery of a lipophilic drug. Pharm Res. 2008;25(2):435–40.

    Article  PubMed  CAS  Google Scholar 

  9. Castro GA, Ferreira LA. Novel vesicular and particulate drug delivery systems for topical treatment of acne. Expert Opin Drug Deliv. 2008;5(6):665–79.

    Article  PubMed  CAS  Google Scholar 

  10. Kircik LH. Microsphere technology: hype or help? J Clin Aesthet Dermatol. 2011;4(5):27–31.

    PubMed  PubMed Central  Google Scholar 

  11. Rao GR, Ghosh S, Dhurat R, Sharma A, Dongre P, Baliga VP. Efficacy, safety, and tolerability of microsphere adapalene vs. conventional adapalene for acne vulgaris. Int J Dermatol. 2009;48(12):1360–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ceilley RI. Advances in topical delivery systems in acne: new solutions to address concentration dependent irritation and dryness. Skinmed. 2011;9(1):15–21.

    PubMed  Google Scholar 

  13. Zhao Y, Moddaresi M, Jones SA, Brown MB. A dynamic topical hydrofluoroalkane foam to induce nanoparticle modification and drug release in situ. Eur J Pharm Biopharm. 2009;72(3):521–8.

    Article  PubMed  CAS  Google Scholar 

  14. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    Article  PubMed  CAS  Google Scholar 

  15. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–91.

    Article  PubMed  CAS  Google Scholar 

  16. Sun M, Fan A, Wang Z, Zhao Y. Dendrimer-mediated drug delivery to the skin. Soft Matter. 2012;8(16):4301–5.

    Article  CAS  Google Scholar 

  17. Stecova J, Mehnert W, Blaschke T, Kleuser B, Sivaramakrishnan R, Zouboulis CC, et al. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: particle characterisation and skin uptake. Pharm Res. 2007;24(5):991–1000.

    Article  PubMed  CAS  Google Scholar 

  18. Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71.

    Article  PubMed  CAS  Google Scholar 

  19. Castro GA, Oliveira CA, Mahecha GA, Ferreira LA. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch Dermatol Res. 2011;303(7):513–20.

    Article  PubMed  CAS  Google Scholar 

  20. Domínguez-Delgado CL, Rodríguez-Cruz IM, Escobar-Chávez JJ, Calderón-Lojero IO, Quintanar-Guerrero D, Ganem A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur J Pharm Biopharm. 2011;79(1):102–7.

    Article  PubMed  Google Scholar 

  21. Klee SK, Farwick M, Lersch P. Triggered release of sensitive active ingredients upon response to the skin’s natural pH. Colloids Surf A. 2009;338(1–3):162–6.

    Article  CAS  Google Scholar 

  22. Rizi K, Green RJ, Donaldson MX, Williams AC. Using pH abnormalities in diseased skin to trigger and target topical therapy. Pharm Res. 2011;28(10):2589–98.

    Article  PubMed  CAS  Google Scholar 

  23. Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010;7(6):1913–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun. 2013;49(21):2082–102.

    Article  CAS  Google Scholar 

  25. Ruhl R, Nau H. Determination of adapalene (CD271/differin®) and retinol in plasma and tissue by on-line solid-phase extraction and HPLC analysis. Chromatographia. 1997;45(1):269–74.

    Article  CAS  Google Scholar 

  26. Martin B, Meunier C, Montels D, Watts O. Chemical stability of adapalene and tretinoin when combined with benzoyl peroxide in presence and in absence of visible light and ultraviolet radiation. Br J Dermatol. 1998;139 Suppl 52:8–11.

    Article  PubMed  CAS  Google Scholar 

  27. Colipa (The European Cosmetics Association). Guidelines for percutaneous absorption/penetration. Brussels; 1997. pp. 15–22.

  28. Zou J, Hew CC, Themistou E, Li Y, Chen CK, Alexandridis P, et al. Clicking well-defined biodegradable nanoparticles and nanocapsules by UV-induced thiol-ene cross-linking in transparent miniemulsions. Adv Mater. 2011;23(37):4274–7.

    Article  PubMed  CAS  Google Scholar 

  29. Slater RA, McDonald TO, Adams D, Draper ER, Weaver JVM, Rannard SP. Architecture-driven aqueous stability of hydrophobic, branched polymer nanoparticles prepared by rapid nanoprecipitation. Soft Matter. 2012;8(38):9816–27.

    Article  CAS  Google Scholar 

  30. Schubert S, Delaney JT, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter. 2011;7(5):1581–8.

    Article  CAS  Google Scholar 

  31. Zhao Y, Brown MB, Jones SA. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams. Int J Pharm. 2010;383(1–2):277–84.

    Article  PubMed  CAS  Google Scholar 

  32. Liu H, Wang P, Zhang X, Shen F, Gogos CG. Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit E PO solid dispersions. Int J Pharm. 2010;383(1–2):161–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sathigari SK, Radhakrishnan VK, Davis VA, Parsons DL, Babu RJ. Amorphous-state characterization of efavirenz–polymer hot-melt extrusion systems for dissolution enhancement. J Pharm Sci. 2012;101(9):3456–64.

    Article  PubMed  CAS  Google Scholar 

  34. Higashi K, Yamamoto K, Pandey MK, Mroue KH, Moribe K, Yamamoto K, et al. Insights into atomic-level interaction between mefenamic acid and Eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy. Mol Pharm. 2014;11(1):351–7.

    Article  PubMed  CAS  Google Scholar 

  35. Traynor MJ, Zhao Y, Brown MB, Jones SA. Vinyl polymer-coated lorazepam particles for drug delivery to the airways. Int J Pharm. 2011;410(1–2):9–16.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Y, Brown MB, Khengar RH, Traynor MJ, Barata P, Jones SA. Pharmacokinetic evaluation of intranasally administered vinyl polymer-coated lorazepam microparticles in rabbits. AAPS J. 2012;14(2):218–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: are they the answer to the dilemma of topical nanoparticles? Nanomedicine. 2010;6(2):227–36.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang J, Sun M, Fan A, Wang Z, Zhao Y. The effect of solute-membrane interaction on solute permeation under supersaturated conditions. Int J Pharm. 2013;441(1–2):389–94.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao Y, Brown MB, Jones SA. The topical delivery of benzoyl peroxide using elegant dynamic hydrofluoroalkane foams. J Pharm Sci. 2010;99(3):1384–98.

    Article  PubMed  CAS  Google Scholar 

  40. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.

    Google Scholar 

  41. Wagner H, Kostka KH, Lehr CM, Schaefer UF. Drug distribution in human skin using two different in vitro test systems: comparison with in vivo data. Pharm Res. 2000;17(12):1475–81.

    Article  PubMed  CAS  Google Scholar 

  42. Harrison JE, Watkinson AC, Green DM, Hadgraft J, Brain K. The relative effect of Azone and Transcutol on permeant diffusivity and solubility in human stratum corneum. Pharm Res. 1996;13(4):542–6.

    Article  PubMed  CAS  Google Scholar 

  43. Mura P, Faucci MT, Bramanti G, Corti P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci. 2000;9(4):365–72.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The work was supported by the National Natural Science Foundation of China (81250110084; 11001197), the Tianjin Research Program of Application Foundation and Advanced Technology (13JCQNJC13300), and the Research Fund for the Doctoral Program of Higher Education of China (20110032120077). The authors of this article have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Khengar, R.H., Sun, M. et al. Acid-Responsive Polymeric Nanocarriers for Topical Adapalene Delivery. Pharm Res 31, 3051–3059 (2014). https://doi.org/10.1007/s11095-014-1398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1398-z

KEY WORDS

Navigation