Skip to main content

Advertisement

Log in

Hyaluronan-Based Nanocarriers with CD44-Overexpressed Cancer Cell Targeting

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of the work was to evaluate the potential of hyaluronan-based nanoparticles as tumor-targeting nano-systems for CD44-overexpressed cancer therapy.

Methods

The synthesized amphiphilic cholesteryl succinoyl hyaluronan (Chol-Suc-HA) conjugates self-assembled into docetaxel(DTX)-loaded nanoparticles in the aqueous environment. The physiochemical properties of Chol-Suc-HA-DTX NPs were characterized. The in vitro cytotoxicity of Chol-Suc-HA-DTX NPs against MCF-7, 4T1, A549 and L929 cells was evaluated using MTT and LDH assays. Moreover, the cellular uptake mechanism was investigated using the CLSM and flow cytometry. The in vivo animal experiments of Chol-Suc-HA-DTX NPs including pharmacokinetic evaluation, bio-distribution observed by EX vivo NIRF imaging and antitumor efficacy were also carried out in SD rats or 4T1 tumor-bearing BALB/c mice.

Results

The self-assembled Chol-Suc-HA-DTX NPs with different degree of substitution (DS) of hydrophobic moiety exhibited high drug loading, uniform particle size distribution and excellent in vitro stability. However, the plasma stability of Chol-Suc-HA-DTX NPs was significantly influenced by the DS of hydrophobic moiety. The higher the DS was, the more stable the NPs were. Cellular uptake demonstrated that Chol-Suc-HA-DTX NPs were internalized into cancer cells via CD44 receptor-mediated endocytosis. Compared with Taxotere®, Chol-Suc-HA-DTX NPs displayed remarkably higher cytotoxicity to CD44-positive cancer cells (MCF-7, 4T1, A549 cells). In vivo animal experiments confirmed that Chol-Suc-HA-DTX NPs with relatively high DS values exhibited prolonged circulation time, excellent tumor-targeting properties and efficient antitumor effects with extremely low systemic toxicity. In addition, blank Chol-Suc-HA NPs also slightly suppressed the tumor growth.

Conclusions

Chol-Suc-HA NPs with a suitable DS value portend to be promising drug vehicles for systemic targeting of CD44-overexpressed cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

4T1:

Mice mammary cancer cells

A549:

Non-small lung cancer cells

C6:

Coumarin-6

CHEMS:

Cholesteryl hemisuccinate

CLSM:

Confocal laser scanning microscope

DCC:

N,N′-dicyclohexylcarbodiimide

DCM:

Dichloromethane

DL:

Drug loading

DLS:

Dynamic light scattering

DMAP:

4-dimethylaminopyridine

DMEM:

Dulbecco’s modified eagle medium

DS:

Degree of substitution

DTX:

Docetaxel

ECM:

Extracellular matrix

EE:

Entrapment efficiency

HA:

Hyaluronan

HAS:

HA synthase

Hyals:

Hyaluronidases

L929:

Mice fibroblasts

LDH:

Lactate dehydrogenase

MCF-7:

Human breast cancer cells

MTT:

3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide

NIRF:

Near infrared fluorescence

RAW 264.7:

Murine macrophage cells

TEM:

Transmission electron microscopy

TIR:

Tumor inhibition rate

REFERENCES

  1. Du C, Deng D, Shan L, Wan S, Cao J, Tian J, et al. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials. 2013;34:3087–97.

    Article  PubMed  CAS  Google Scholar 

  2. Huo M, Zou A, Yao C, Zhang Y, Zhou J, Wang J, et al. Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. Biomaterials. 2012;33:6393–407.

    Article  PubMed  CAS  Google Scholar 

  3. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: NBM. 2010;6:714–29.

    Article  CAS  Google Scholar 

  4. Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release. 2012;161:884–92.

    Article  PubMed  CAS  Google Scholar 

  5. Cui Y, Xu Q, Chow PK-H, Wang D, Wang C-H. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34:8511–20.

    Article  PubMed  CAS  Google Scholar 

  6. Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, et al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan–PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials. 2013;34:10120–32.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang B, Sun X, Mei H, Wang Y, Liao Z, Chen J, et al. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials. 2013;34:9171–82.

    Article  PubMed  CAS  Google Scholar 

  8. Gaca S, Reichert S, Multhoff G, Wacker M, Hehlgans S, Botzler C, et al. Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Release. 2013;172:201–6.

    Article  PubMed  CAS  Google Scholar 

  9. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75:1–18.

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Wang J, Wientjes MG, Au JLS. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev. 2012;64:29–39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011;63:1340–51.

    Article  PubMed  CAS  Google Scholar 

  12. Leeand JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol. 2000;12:581–6.

    Article  Google Scholar 

  13. Robert L, Robert AM, Renard G. Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in aging. Pathol Biol. 2010;58:187–98.

    Article  PubMed  CAS  Google Scholar 

  14. Bullard KM, Kim H-R, Wheeler MA, Wilson CM, Neudauer CL, Simpson MA, et al. Hyaluronan synthase-3 is upregulated in metastatic colon carcinoma cells and manipulation of expression alters matrix retention and cellular growth. Int J Cancer. 2003;107:739–46.

    Article  PubMed  CAS  Google Scholar 

  15. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 1999;274:25085–92.

    Article  PubMed  CAS  Google Scholar 

  16. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.

    Article  PubMed  CAS  Google Scholar 

  17. Sternand R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.

    Article  Google Scholar 

  18. Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol. 2004;83:317–25.

    Article  PubMed  CAS  Google Scholar 

  19. Bourguignon LYW. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol. 2008;18:251–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.

    Article  PubMed  CAS  Google Scholar 

  21. Bourguignon LYW, Wong G, Earle C, Krueger K, Spevak CC. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, MicroRNA-10b expression, and RhoA/RhoC up-regulation, leading to rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Götteand M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66:10233–7.

    Article  Google Scholar 

  23. Kim H-R, Wheeler MA, Wilson CM, Iida J, Eng D, Simpson MA, et al. Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res. 2004;64:4569–76.

    Article  PubMed  CAS  Google Scholar 

  24. Bartolazzi A, Peach R, Aruffo A, Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med. 1994;180:53–66.

    Article  PubMed  CAS  Google Scholar 

  25. Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem. 2002;277:38013–20.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshihara S, Kon A, Kudo D, Nakazawa H, Kakizaki I, Sasaki M, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579:2722–6.

    Article  PubMed  CAS  Google Scholar 

  27. Zeng C, Toole BP, Kinney SD, Kuo JW, Stamenkovic I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer. 1998;77:396–401.

    Article  PubMed  CAS  Google Scholar 

  28. Heldin C-H, Rubin K, Pietras K, Östman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.

    Article  PubMed  CAS  Google Scholar 

  29. Zahalka MA, Okon E, Gosslar U, Holzmann B, Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44-and hyaluronate-dependent. J Immunol. 1995;154:5345–55.

    PubMed  CAS  Google Scholar 

  30. Luo Y, Bernshaw NJ, Lu Z-R, Kopecek J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.

    Article  PubMed  CAS  Google Scholar 

  31. Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1:208–18.

    Article  PubMed  CAS  Google Scholar 

  32. Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34:3489–502.

  33. Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS. Development of hyaluronic acid–Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine: NBM. 2007;3:132–7.

    Article  CAS  Google Scholar 

  34. Lee H, Mok H, Lee S, Oh Y-K, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release. 2007;119:245–52.

    Article  PubMed  CAS  Google Scholar 

  35. Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33:3980–9.

    Article  PubMed  CAS  Google Scholar 

  36. Laroui H, Grossin L, Léonard M, Stoltz J-F, Gillet P, Netter P, et al. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules. 2007;8:3879–85.

    Article  PubMed  CAS  Google Scholar 

  37. Surace C, Arpicco S, Dufaÿ-Wojcicki AL, Marsaud VR, Bouclier CL, Clay D, et al. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm. 2009;6:1062–73.

    Article  PubMed  CAS  Google Scholar 

  38. Song S, Chen F, Qi H, Li F, Xin T, Xu J et al. Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of docetaxel. Pharm Res 2013;31:1–14.

  39. Yu J-M, Li Y-J, Qiu L-Y, Jin Y. Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur Polym J. 2008;44:555–65.

    Article  CAS  Google Scholar 

  40. Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92.

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421:160–9.

    Article  PubMed  CAS  Google Scholar 

  42. Itano N. Simple primary structure, complex turnover regulation and multiple roles of hyaluronan. J Biochem. 2008;144:131–7.

    Article  PubMed  CAS  Google Scholar 

  43. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.

    Article  PubMed  CAS  Google Scholar 

  44. Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry. 2007;46:6911–20.

    Article  PubMed  CAS  Google Scholar 

  45. Choi KY, Yoon HY, Kim J-H, Bae SM, Park R-W, Kang YM, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011;5:8591–9.

    Article  PubMed  CAS  Google Scholar 

  46. Fraser J, Laurent T, Laurent U. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.

    Article  PubMed  CAS  Google Scholar 

  47. Laurentand TC, Fraser J. Hyaluronan. FASEB J. 1992;6:2397–404.

    Google Scholar 

  48. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir. 2008;24:5213–7.

    Article  PubMed  CAS  Google Scholar 

  49. Almalik A, Karimi S, Ouasti S, Donno R, Wandrey C, Day PJ, et al. Hyaluronic acid (HA) presentation as a tool to modulate and control the receptor-mediated uptake of HA-coated nanoparticles. Biomaterials. 2013;34:5369–80.

    Article  PubMed  CAS  Google Scholar 

  50. Gaucher G, Asahina K, Wang J, Leroux J-C. Effect of poly (N-vinyl-pyrrolidone)-block-poly (D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules. 2009;10:408–16.

    Article  PubMed  CAS  Google Scholar 

  51. Aguiar DJ, Knudson W, Knudson CB. Internalization of the hyaluronan receptor CD44 by chondrocytes. Exp Cell Res. 1999;252:292–302.

    Article  PubMed  CAS  Google Scholar 

  52. Ouasti S, Kingham PJ, Terenghi G, Tirelli N. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials. 2012;33:1120–34.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was financially supported by the National Natural Science Foundation of China (NSFC, No.81273447), Hebei Natural Science Foundation of China (HENSF, C2011319007) and special construction projects fund which belongs to “Taishan Scholar——Pharmacy Specially Recruited Experts”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingliang Wu or Weisan Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Qi, H., Xu, J. et al. Hyaluronan-Based Nanocarriers with CD44-Overexpressed Cancer Cell Targeting. Pharm Res 31, 2988–3005 (2014). https://doi.org/10.1007/s11095-014-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1393-4

KEY WORDS

Navigation