Skip to main content

Advertisement

Log in

Comparison of Succinimidyl [125I]Iodobenzoate with Iodogen Iodination Methods to Study Pharmacokinetics and ADME of Biotherapeutics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the application of succinimidyl iodobenzoate (SIB) iodination method in labeling biotherapeutics to study their pharmacokinetics (PK) and biodistribution.

Method

An IgG molecule (protein-01) and a 40 KDa protein (protein-02) were evaluated. Pharmacokinetics (PK) and biodistribution of the radiolabeled IgG (125I-protein-01) in mice compared parameters from SIB and Iodogen protein iodination labeling methods. In addition, PK of radiolabeled 40 KDa protein (125I-protein-02) using SIB was compared with non-labeled protein-02 analyzed by ligand binding assay (LBA).

Results

Up to 72 h following a single IP injection to mice, the percentage of “free-label” determined by the soluble counts after TCA precipitation to total radioactivity in serum samples was 2.8–49.4% vs. <1.0% for 125I-protein-01 iodinated via Iodogen or SIB methods, respectively, suggesting a higher in vivo stability of 125I-protein-01 labeled via the SIB method. The serum exposure of 125I-protein-01 was two-fold higher, and correspondingly, the tissue exposure was also higher (averaging 3.6 fold at 168 h) when using SIB protein labeling method than when using the Iodogen method. In addition, following subcutaneous (SC) administration to mice, the serum exposure of 125I-protein-02 labeled via SIB method was similar to protein-02 measure by LBA.

Conclusion

In this study, iodination of proteins using SIB methodology has overcome the dehalogenation problem in vivo which is inherent in Iodogen method, and PK parameters of a protein iodinated via SIB were comparable to the un-labeled protein measured by LBA. The SIB iodination method is an improved labeling approach for biotherapeutics used in studying PK and biodistribution characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ADME:

Absorption, distribution, metabolism, excretion

AUC:

Area under concentration versus time curve

IP:

Intraperitoneal

LBA:

Ligand-binding assays

LC-MS:

Liquid chromatography-mass spectrometry

mAb:

Monoclonal antibody

MW:

Molecular weight

NCS:

N-chlorosuccinimide

PBS:

Phosphate buffered saline

PK:

Pharmacokinetics

RCP:

Radiochemical purity

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatogram

SIB:

Succinimidyl iodobenzoate

TCA:

Trichloroacetic acid

REFERENCES

  1. DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20:1885–900.

    Article  PubMed  CAS  Google Scholar 

  2. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13:99–110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Rup B, O’Hara D. Critical ligand binding reagent preparation/selection: when specificity depends on reagents. AAPS J. 2007;9:E148–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Gorovits B. Antidrug antibody assay validation: industry survey results. AAPS J. 2009;11:133–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. O’Hara DM, Theobald V, Egan AC, Usansky J, Krishna M, TerWee J, et al. Ligand binding assays in the 21st century laboratory: recommendations for characterization and supply of critical reagents. AAPS J. 2012;14:316–28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

    Article  PubMed  CAS  Google Scholar 

  7. Ewles M, Goodwin L. Bioanalytical approaches to analyzing peptides and proteins by LC–MS/MS. Bioanalysis. 2011;3:1379–97.

    Article  PubMed  CAS  Google Scholar 

  8. Efimova YMWB, Haemers S, Van Well AA. Changes in the secondary structure of proteins with 125I: CD spectroscopy and enzymatic activity studies. J Radioanal Nucl Chem. 2005;264:91–6.

    Article  CAS  Google Scholar 

  9. Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X. Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci. 2010;99:1028–45.

    PubMed  CAS  Google Scholar 

  10. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen J, Cheng Z, Miao Y, Jurisson SS, Quinn TP. Alpha-melanocyte-stimulating hormone peptide analogs labeled with technetium-99m and indium-111 for malignant melanoma targeting. Cancer. 2002;94:1196–201.

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Strand SE, Sjogren HO. Optimization of radioiodination and biotinylation of monoclonal antibody chimeric BR96: an indirect labeling using N-succinimidyl-3-(tri-n-butylstannyl)benzoate conjugate. Cancer Biother Radiopharm. 1996;11:217–26.

    Article  PubMed  CAS  Google Scholar 

  13. Khalaj ABD, Rafiee H, Najafi R. A new and simple synthesis of N-succinimidyl-4-[127/125I] iodobenzoate involving a microwave-accelerated iodination step. J Label Compd Radiopharm. 2001;44:235–40.

    Article  CAS  Google Scholar 

  14. Wang M, Defranco D, Wright K, Quazi S, Chen J, Spencer-Pierce J, et al. Decreased subcutaneous bioavailability of an oxyntomodulin analog in a controlled release formulation could be skin metabolism in rats. J Bioequiv Availab. 2012;4:69–77.

  15. Osterman L. Methods of protein and nucleic acid research. New York: Springer; 1984.

    Book  Google Scholar 

  16. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, et al. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med. 1989;30:216–26.

    PubMed  CAS  Google Scholar 

  17. Lee J, Coleman RE, Sherman LA. Comparison of iodine monochloride and modified chloramine-T radioiodination for in vivo protein studies. J Lab Clin Med. 1977;89:836–44.

    PubMed  CAS  Google Scholar 

  18. Visser GW, Klok RP, Gebbinck JW, ter Linden T, van Dongen GA, Molthoff CF. Optimal quality (131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med. 2001;42:509–19.

    PubMed  CAS  Google Scholar 

  19. Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973;133:529–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Koehrle J, Auf’mkolk M, Rokos H, Hesch RD, Cody V. Rat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site. J Biol Chem. 1986;261:11613–22.

    PubMed  CAS  Google Scholar 

  21. Bai H, Jing D, Jiang H, Yin S. Pharmacokinetics, tissue distribution and excretion of recombinant human parathyroid hormone 1–84 in animals. Cell Biochem Biophys. 2013;66:379–87.

    Article  PubMed  CAS  Google Scholar 

  22. Chen JQSS, Brechbiel MW, Gansow OA. Combination of biotinylation and In-111 labelling with chelate SCN-Bz-CHX-A-DTPA for chimeric BR96, biodistribution and pharmacokinetic studies in colon carcinoma isografted rats. Tumor Target. 1996;2:66–75.

    CAS  Google Scholar 

  23. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother. 1997;44:179–88.

    Article  PubMed  CAS  Google Scholar 

  24. Zalutsky MR, Narula AS. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Int J Radiat Appl Instrum A. 1987;38:1051–5.

    Article  CAS  Google Scholar 

  25. Zalutsky MR, Narula AS. Radiohalogenation of a monoclonal antibody using an N-succinimidyl 3-(tri-n-butylstannyl)benzoate intermediate. Cancer Res. 1988;48:1446–50.

    PubMed  CAS  Google Scholar 

  26. Cheng Z, Chen J, Miao Y, Owen NK, Quinn TP, Jurisson SS. Modification of the structure of a metallopeptide: synthesis and biological evaluation of (111)In-labeled DOTA-conjugated rhenium-cyclized alpha-MSH analogues. J Med Chem. 2002;45:3048–56.

    Article  PubMed  CAS  Google Scholar 

  27. Ferraiolo BL, Moore JA, Crase D, Gribling P, Wilking H, Baughman RA. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-alpha in mice. Drug Metab Dispos. 1988;16:270–5.

    PubMed  CAS  Google Scholar 

  28. Rajalingam D, Loftis C, Xu JJ, Kumar TK. Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci. 2009;18:980–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Remy H, Borget I, Leboulleux S, Guilabert N, Lavielle F, Garsi J, et al. 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med. 2008;49:1445–50.

    Article  PubMed  CAS  Google Scholar 

  30. Motie M, Schaul KW, Potempa LA. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metab Dispos. 1998;26:977–81.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

The authors would like to thank members of the Department of Comparative Medicine, Pfizer Inc, Andover, for conducting in-life animal studies; and to thank Yan Weng and Martin Dowty for providing the proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, M., Joyce, A. et al. Comparison of Succinimidyl [125I]Iodobenzoate with Iodogen Iodination Methods to Study Pharmacokinetics and ADME of Biotherapeutics. Pharm Res 31, 2810–2821 (2014). https://doi.org/10.1007/s11095-014-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1378-3

KEY WORDS

Navigation