Skip to main content

Advertisement

Log in

A Complementary Strategy for Enhancement of Nanoparticle Intracellular Uptake

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The complementary strategy by combining targeting ligand-mediated selectivity and CPP-mediated transmembrane function could be exploit synergies for enhancing cellular uptake of nanoparticles with negative charge. A heparin-based nanoparticles with negative charge was fabricated by complementary strategy, which was expected to attain efficient uptake and simultaneously exert great anticancer activity.

Methods

We synthesized heparin-based nanoparticles with targeting ligand folate and CPP ligand Tat to deliver paclitaxel (H-F-Tat-P NPs). The NPs were characterized by 1H NMR, DLS and TEM, respectively. The effect of dual ligands on system behavior in aqueous solution was investigated. Moreover, its cellular internalization and anticancer activity were detected by flow cytometry, confocal microscopy and MTT.

Results

Folate played a key role in the formation of heparin-based NPs dependent on the balance of amphiphilic Tat and hydrophobic folate. Although H-F-Tat-P NPs primarily entered FR specific and non-specific cells by similar routes, there were no comparability due to cell-type specific variation. Unlike non-specific cells, the complementary ligands could help negative-charged NPs to enhance cellular uptake facilitating its endosome escape in specific cells thereby exhibiting great anticancer activity.

Conclusions

The complementary strategy for negative-charged NPs was presented a promising delivery system for diverse anticancer agents enable simultaneously targeting and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

H-F-Tat-P NPs:

Heparin-Folate-Tat-Paclitaxel Nanoparticles

FR:

Folate Receptor

Tat:

Transactivating transcriptional activator peptide

CPP:

Cell-penetrating peptide

MBCD:

Methyl-β-cyclodextrin

CPZ:

Chlorpromazine

DLS:

Dynamic light scattering

TEM:

Transmission electron microscope

References

  1. De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20(22):4225–41.

    Article  CAS  Google Scholar 

  2. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed. 2009;48(5):872–97.

    Article  CAS  Google Scholar 

  3. Chung Y-I, Tae G, Yuk Hong S. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials. 2006;27(12):2621–6.

    Article  CAS  PubMed  Google Scholar 

  4. Nie T, Akins Jr RE, Kiick KL. Production of heparin-containing hydrogels for modulating cell responses. Acta Biomaterialia. 2009;5(3):865–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bae KH, Mok H, Park TG. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials. 2008;29(23):3376–83.

    Article  CAS  PubMed  Google Scholar 

  6. Casu B, Guerrini M, Guglieri S, Naggi A, Perez M, Torri G, et al. Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem. 2004;47(4):838–48.

    Article  CAS  PubMed  Google Scholar 

  7. Linhardt RJ, Claude Hudson S. Award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem. 2003;46(13):2551–64.

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Bae BC, Tran TH, Yoon KH, Na K, Huh KM. Self-quenchable biofunctional nanoparticles of heparin-folate-photosensitizer conjugates for photodynamic therapy. Carbohydr Polymer. 2011;86(2):708–15.

    Article  CAS  Google Scholar 

  9. Li L, Kim JK, Huh KM, Lee YK, Kim SY. Targeted delivery of paclitaxel using folate-conjugated heparin-poly (β-benzyl-l-aspartate) self-assembled nanoparticles. Carbohydr Polymer. 2012;87:2012–8.

    Article  Google Scholar 

  10. Kemp MM, Linhardt RJ. Heparin‐based nanoparticles. Wiley Interdiscipl Rev: Nanomedicine Nanobiotechnology. 2009;2(1):77–87.

    Google Scholar 

  11. Park I-K, Tran TH, Oh I-H, Kim Y-J, Cho KJ, Huh KM, et al. Ternary biomolecular nanoparticles for targeting of cancer cells and anti-angiogenesis. Eur J Pharm Sci. 2010;41(1):148–55.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng CJ, Saltzman WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials. 2011;32:6194–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991;51(19):5329–38.

    CAS  PubMed  Google Scholar 

  14. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 2006;73(9):2432–43.

    Article  Google Scholar 

  15. Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992;52(23):6708–11.

    CAS  PubMed  Google Scholar 

  16. Ulbrich K, Michaelis M, Rothweiler F, Knobloch T, Sithisarn P, Cinatl J, et al. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. Int J Pharm. 2011;406(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Huey Lee S, Feng S-S. Folate-decorated poly (lactide-<i>co</i>−glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials. 2007;28(10):1889–99.

    Article  PubMed  Google Scholar 

  18. Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci. 2010;107(9):4311–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials. 2008;29(33):4429–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60(4):548–58.

    Article  CAS  PubMed  Google Scholar 

  21. Kamei N, Morishita M, Takayama K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Contr Release. 2009;136(3):179–86.

    Article  CAS  Google Scholar 

  22. Zhao P, Wang H, Yu M, Cao S, Zhang F, Chang J, et al. Paclitaxel-loaded, folic-acid-targeted and TAT-peptide-conjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm Res. 2010;27(9):1914–26.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang QY, Lai LH, Shen J, Wang QQ, Xu FJ, Tang GP. Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials. 2011;32:7253–62.

    Article  CAS  PubMed  Google Scholar 

  24. Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochimica et Biophysica Acta (BBA)-Biomembr. 2006;1758(3):264–79.

    Article  CAS  Google Scholar 

  25. Harush-Frenkel O, Bivas-Benita M, Nassar T, Springer C, Sherman Y, Avital A, et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxic Appl Pharm. 2010;246(1):83–90.

    Article  CAS  Google Scholar 

  26. Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles-known and unknown health risks. J Nanobiotechnology. 2004;2(1):12.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gao H, Xiong J, Cheng T, Liu J, Chu L, Liu J, et al. In Vivo Biodistribution of Mixed Shell Micelles with Tunable Hydrophilic/Hydrophobic Surface. Biomacromolecules. 2013;14(2):460–7.

    Article  CAS  PubMed  Google Scholar 

  28. Takakura Y, Fujita T, Hashida M, Sezaki H. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res. 1990;7(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Wang Y, Xiang J, Yao K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules. 2010;11(12):3531–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tran TH, Bae BC, Lee YK, Na K, Huh KM. Heparin-folate-retinoic acid bioconjugates for targeted delivery of hydrophobic photosensitizers. Carbohydr Polymer. 2012;92:1615–24.

    Article  Google Scholar 

  31. Scomparin A, Salmaso S, Bersani S, Satchi-Fainaro R, Caliceti P. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci. 2011;42(5):547–58.

    Article  CAS  PubMed  Google Scholar 

  32. Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Contr Release. 2004;100(2):247–56.

    Article  CAS  Google Scholar 

  33. Sawant R, Torchilin V. Intracellular delivery of nanoparticles with CPPs. Methods Mol Biol. 2011;683:431–51.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, et al. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano. 2009;3(10):3165–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138–55.

    Article  CAS  PubMed  Google Scholar 

  37. Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today. 2011;6(2):176–85.

    Article  CAS  Google Scholar 

  38. Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. Acs Nano. 2011;5(5):3679–92.

    Article  CAS  PubMed  Google Scholar 

  39. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci. 1980;77(3):1561–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Yingjia Li and Ge Wen have equal contribution in this work and are both equally considered as first author. The authors are grateful for financial support by Natural Science Foundation of China (Grant No. 21204036, 81272509, 81371559); Science and Technology Planning Project of Guangdong Province (Grant No. 2011B010400018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wen, G., Wang, D. et al. A Complementary Strategy for Enhancement of Nanoparticle Intracellular Uptake. Pharm Res 31, 2054–2064 (2014). https://doi.org/10.1007/s11095-014-1307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1307-5

KEY WORDS

Navigation