Skip to main content
Log in

Divergent Effects of Sulforaphane on Basal and Glucose-Stimulated Insulin Secretion in β-Cells: Role of Reactive Oxygen Species and Induction of Endogenous Antioxidants

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oxidative stress is implicated in pancreatic β-cell dysfunction, yet clinical outcomes of antioxidant therapies on diabetes are inconclusive. Since reactive oxygen species (ROS) can function as signaling intermediates for glucose-stimulated insulin secretion (GSIS), we hypothesize that exogenously boosting cellular antioxidant capacity dampens signaling ROS and GSIS.

Methods

To test the hypothesis, we formulated a mathematical model of redox homeostatic control circuit comprising known feedback and feedforward loops and validated model predictions with plant-derived antioxidant sulforaphane (SFN).

Results

SFN acutely (30-min treatment) stimulated basal insulin secretion in INS-1(832/13) cells and cultured mouse islets, which could be attributed to SFN-elicited ROS as N-acetylcysteine or glutathione ethyl ester suppressed SFN-stimulated insulin secretion. The mathematical model predicted an adapted redox state characteristic of strong induction of endogenous antioxidants but marginally increased ROS under prolonged SFN exposure, a state that attenuates rather than facilitates glucose-stimulated ROS and GSIS. We validated the prediction by demonstrating that although 24-h treatment of INS-1(832/13) cells with low, non-cytotoxic concentrations of SFN (2–10 μM) protected the cells from cytotoxicity by oxidative insult, it markedly suppressed insulin secretion stimulated by 20 mM glucose.

Conclusions

Our study indicates that adaptive induction of endogenous antioxidants by exogenous antioxidants, albeit cytoprotective, inhibits GSIS in β-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Antioxidant capacity

ARE:

Antioxidant response element

BSA:

Bovine serum albumin

CM-H2DCFDA:

5-(and-6)-chloromethyl-2’ 7’-dichlorodihydrofluorescein diacetate, acetyl ester

DEM:

Diethylmaleate

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

GCLC:

γ-glutamate cysteine ligase catalytic subunit

GSH-EE:

Glutathione ethyl ester

GSIS:

Glucose-stimulated insulin secretion

H2O2 :

Hydrogen peroxide

HMOX-1:

Heme oxygenase 1

NAC:

N-acetylcysteine

NQO1:

NAD(P)H: quinone oxidoreductase 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

ROS:

Reactive oxygen species

SFN:

Sulforaphane

SRXN1:

Sulfiredoxin 1

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

tBHQ:

Tert-butylhydroquinone

References

  1. Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, et al. How does type 1 diabetes develop?: the notion of homicide or beta-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  PubMed  CAS  Google Scholar 

  2. Robertson RP. Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr Opin Pharmacol. 2006;6:615–9.

    Article  PubMed  CAS  Google Scholar 

  3. Fridlyandand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells? Diabetes. 2004;53:1942–8.

    Article  Google Scholar 

  4. Robertsonand RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med. 2006;41:177–84.

    Article  Google Scholar 

  5. Kajimotoand Y, Kaneto H. Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci. 2004;1011:168–76.

    Article  Google Scholar 

  6. Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53 Suppl 1:S119–24.

    Article  PubMed  CAS  Google Scholar 

  7. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    Article  PubMed  CAS  Google Scholar 

  8. Ezzedine K, Latreille J, Kesse-Guyot E, Galan P, Hercberg S, Guinot C, et al. Incidence of skin cancers during 5-year follow-up after stopping antioxidant vitamins and mineral supplementation. Eur J Cancer. 2010;46:3316–22.

    Article  PubMed  CAS  Google Scholar 

  9. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–70.

    Article  PubMed  CAS  Google Scholar 

  10. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–57.

    Article  PubMed  CAS  Google Scholar 

  11. Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 2003;29:579–85.

    Article  PubMed  CAS  Google Scholar 

  12. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    Article  PubMed  CAS  Google Scholar 

  13. Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA. 2005;294:56–65.

    Article  PubMed  CAS  Google Scholar 

  14. Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2009;301:52–62.

    Article  PubMed  CAS  Google Scholar 

  15. Brown AL, Lane J, Coverly J, Stocks J, Jackson S, Stephen A, et al. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br J Nutr. 2009;101:886–94.

    Article  PubMed  CAS  Google Scholar 

  16. Hsuand CH, Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol. 2007;595:471–80.

    Article  Google Scholar 

  17. Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci. 2011;1215:161–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem. 2003;278:9796–801.

    Article  PubMed  CAS  Google Scholar 

  19. Armann B, Hanson MS, Hatch E, Steffen A, Fernandez LA. Quantification of basal and stimulated ROS levels as predictors of islet potency and function. Am J Transplant. 2007;7:38–47.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, et al. Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology. 2009;150:2197–201.

    Article  PubMed  CAS  Google Scholar 

  21. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56:1783–91.

    Article  PubMed  CAS  Google Scholar 

  22. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58:673–81.

    Article  PubMed  CAS  Google Scholar 

  23. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, et al. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes. 2006;55:2084–90.

    Article  PubMed  CAS  Google Scholar 

  24. Chun OK, Floegel A, Chung SJ, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J Nutr. 2010;140:317–24.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89:2399–403.

    Article  PubMed  CAS  Google Scholar 

  26. Joseph MA, Moysich KB, Freudenheim JL, Shields PG, Bowman ED, Zhang Y, et al. Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer. 2004;50:206–13.

    Article  PubMed  CAS  Google Scholar 

  27. Lin HJ, Probst-Hensch NM, Louie AD, Kau IH, Witte JS, Ingles SA, et al. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 1998;7:647–52.

    PubMed  CAS  Google Scholar 

  28. Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, et al. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol. 2009;235:57–67.

    Article  PubMed  CAS  Google Scholar 

  29. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, et al. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005;280:19911–24.

    Article  PubMed  CAS  Google Scholar 

  30. Moon DO, Kim MO, Kang SH, Choi YH, Kim GY. Sulforaphane suppresses TNF-alpha-mediated activation of NF-kappaB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett. 2009;274:132–42.

    Article  PubMed  CAS  Google Scholar 

  31. Moon DO, Kang SH, Kim KC, Kim MO, Choi YH, Kim GY. Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. Cancer Lett. 2010;295:260–6.

    Article  PubMed  CAS  Google Scholar 

  32. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269:291–304.

    Article  PubMed  CAS  Google Scholar 

  33. Kohleand C, Bock KW. Activation of coupled Ah receptor and Nrf2 gene batteries by dietary phytochemicals in relation to chemoprevention. Biochem Pharmacol. 2006;72:795–805.

    Article  Google Scholar 

  34. Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr. 2005;135:2993S–3001S.

    PubMed  CAS  Google Scholar 

  35. Zhang Q, Pi J, Woods CG, Andersen ME. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol. 2010;244:84–97.

    Article  PubMed  CAS  Google Scholar 

  36. Hu C, Eggler AL, Mesecar AD, van Breemen RB. Modification of keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 2011;24:515–21.

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol. 2009;29:493–502.

    Article  PubMed  CAS  Google Scholar 

  38. Luo Y, Eggler AL, Liu D, Liu G, Mesecar AD, van Breemen RB. Sites of alkylation of human Keap1 by natural chemoprevention agents. J Am Soc Mass Spectrom. 2007;18:2226–32.

    Article  PubMed  CAS  Google Scholar 

  39. Zhangand Q, Andersen ME. Dose response relationship in anti-stress gene regulatory networks. PLoS Comput Biol. 2007;3:e24.

    Article  Google Scholar 

  40. Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. 2010;118:864–70.

    Article  PubMed  CAS  Google Scholar 

  41. Woods CG, Fu J, Xue P, Hou Y, Pluta LJ, Yang L, et al. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicol Appl Pharmacol. 2009;238:27–36.

    Article  PubMed  CAS  Google Scholar 

  42. Yang B, Fu J, Zheng H, Xue P, Yarborough K, Woods CG, et al. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic beta-cells vulnerable to arsenic-induced cell damage. Toxicol Appl Pharmacol. 2012;264:315–23.

    Article  PubMed  CAS  Google Scholar 

  43. Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res. 2003;290:234–45.

    Article  PubMed  CAS  Google Scholar 

  44. Zhao R, Hou Y, Xue P, Woods CG, Fu J, Feng B, et al. Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes. Environ Health Perspect. 2011;119:56–62.

    Article  PubMed  CAS  Google Scholar 

  45. Newgard CB, Lu D, Jensen MV, Schissler J, Boucher A, Burgess S, et al. Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach. Diabetes. 2002;51 Suppl 3:S389–93.

    Article  PubMed  CAS  Google Scholar 

  46. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312:1882–3.

    Article  PubMed  Google Scholar 

  47. Pi J, Zhang Q, Fu J, Woods CG, Hou Y, Corkey BE, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol. 2011;244:77–83.

    Article  Google Scholar 

  48. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol. 2004;24:1844–54.

    Article  PubMed  CAS  Google Scholar 

  49. Goldstein BJ, Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes. 2005;54:311–21.

    Article  PubMed  CAS  Google Scholar 

  50. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101:8852–7.

    Article  PubMed  CAS  Google Scholar 

  51. Li X, Chen H, Epstein PN. Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic beta-cells. Diabetes. 2006;55:1592–604.

    Article  PubMed  CAS  Google Scholar 

  52. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicals–promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer. 2007;120:451–8.

    Article  PubMed  CAS  Google Scholar 

  53. Norlin S, Ahlgren U, Edlund H. Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes. 2005;54:125–32.

    Article  PubMed  CAS  Google Scholar 

  54. Hammar EB, Irminger JC, Rickenbach K, Parnaud G, Ribaux P, Bosco D, et al. Activation of NF-kappaB by extracellular matrix is involved in spreading and glucose-stimulated insulin secretion of pancreatic beta cells. J Biol Chem. 2005;280:30630–7.

    Article  PubMed  CAS  Google Scholar 

  55. Bernal-Mizrachi E, Wen W, Shornick M, Permutt MA. Activation of nuclear factor-kappaB by depolarization and Ca(2+) influx in MIN6 insulinoma cells. Diabetes. 2002;51 Suppl 3:S484–8.

    Article  PubMed  CAS  Google Scholar 

  56. Xu C, Shen G, Chen C, Gelinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005;24:4486–95.

    Article  PubMed  CAS  Google Scholar 

  57. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001;276:32008–15.

    Article  PubMed  CAS  Google Scholar 

  58. Kim S, Millet I, Kim HS, Kim JY, Han MS, Lee MK, et al. NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci U S A. 2007;104:1913–8.

    Article  PubMed  CAS  Google Scholar 

  59. Chang I, Kim S, Kim JY, Cho N, Kim YH, Kim HS, et al. Nuclear factor kappaB protects pancreatic beta-cells from tumor necrosis factor-alpha-mediated apoptosis. Diabetes. 2003;52:1169–75.

    Article  PubMed  CAS  Google Scholar 

  60. Ortis F, Cardozo AK, Crispim D, Storling J, Mandrup-Poulsen T, Eizirik DL. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation. Mol Endocrinol. 2006;20:1867–79.

    Article  PubMed  CAS  Google Scholar 

  61. Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, et al. Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology. 1999;140:3219–27.

    Article  PubMed  CAS  Google Scholar 

  62. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999;283:981–5.

    Article  PubMed  CAS  Google Scholar 

  63. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62:5196–203.

    PubMed  CAS  Google Scholar 

  64. del Cano MV, Reyes JM, Park CY, Gao X, Mori K, Chuck RS, et al. Demonstration by redox fluorometry that sulforaphane protects retinal pigment epithelial cells against oxidative stress. Invest Ophthalmol Vis Sci. 2008;49:2606–12.

    Article  Google Scholar 

  65. Hiiand CS, Howell SL. Effects of epicatechin on rat islets of Langerhans. Diabetes. 1984;33:291–6.

    Article  Google Scholar 

  66. Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol. 2007;568:269–77.

    Article  PubMed  CAS  Google Scholar 

  67. Teodoro T, Zhang L, Alexander T, Yue J, Vranic M, Volchuk A. Oleanolic acid enhances insulin secretion in pancreatic beta-cells. FEBS Lett. 2008;582:1375–80.

    Article  PubMed  CAS  Google Scholar 

  68. Abdel Aziz MT, El-Asmar MF, El Nadi EG, Wassef MA, Ahmed HH, Rashed LA, et al. The effect of curcumin on insulin release in rat-isolated pancreatic islets. Angiology. 2010;61:557–66.

    Article  PubMed  CAS  Google Scholar 

  69. Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol. 2010;161:799–814.

    Article  PubMed  CAS  Google Scholar 

  70. Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem. 2011;286:6049–60.

    Article  PubMed  CAS  Google Scholar 

  71. Jakab M, Lach S, Bacova Z, Langeluddecke C, Strbak V, Schmidt S, et al. Resveratrol inhibits electrical activity and insulin release from insulinoma cells by block of voltage-gated Ca+ channels and swelling-dependent Cl- currents. Cell Physiol Biochem. 2008;22:567–78.

    Article  PubMed  CAS  Google Scholar 

  72. Szkudelski T. Resveratrol inhibits insulin secretion from rat pancreatic islets. Eur J Pharmacol. 2006;552:176–81.

    Article  PubMed  CAS  Google Scholar 

  73. Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H, et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem. 2006;281:10214–21.

    Article  PubMed  CAS  Google Scholar 

  74. Szkudelski T. Resveratrol-induced inhibition of insulin secretion from rat pancreatic islets: evidence for pivotal role of metabolic disturbances. Am J Physiol Endocrinol Metab. 2007;293:E901–7.

    Article  PubMed  CAS  Google Scholar 

  75. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A. 2011;108:1433–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Jingqi Fu and Qiang Zhang contributed equally to this work. This work was supported in part by the National Institutes of Health Grants DK76788 (to J.P.) and ES016005 (to J.P.) and the DOW Chemical Company (to M.E.A.). The content is solely the responsibility of the authors. All authors have agreed to its content and there are no financial or other conflicts of interest. J.F., B.Y., Q.Z., C.G.W, H.Z., M.E.A. and J.P. are/were employees of The Hamner Institutes for Health Sciences. The Hamner is a 501(c)3 not-for-profit organization that has a diverse research portfolio that includes funding from the American Chemistry Council, a trade association that represents chemical manufacturers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhang or Jingbo Pi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Zhang, Q., Woods, C.G. et al. Divergent Effects of Sulforaphane on Basal and Glucose-Stimulated Insulin Secretion in β-Cells: Role of Reactive Oxygen Species and Induction of Endogenous Antioxidants. Pharm Res 30, 2248–2259 (2013). https://doi.org/10.1007/s11095-013-1013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1013-8

KEY WORDS

Navigation