Skip to main content
Log in

Recombinant High Density Lipoprotein Nanoparticles for Target-Specific Delivery of siRNA

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for treatments of numerous diseases. However, the progress towards broad application of siRNA requires the development of safe and effective vectors that target to specific cells. In this study, we developed a novel recombinant high density lipoprotein (rHDL) vector with high siRNA encapsulation efficiency.

Methods

They were prepared by condensing siRNA with various commercial cationic polymers and coating the polyplex with a layer of lipids and apolipoprotein AI (apo AI). The rHDL nanoparticles were used to transfect SMMC-7721 hepatoma cells with stable luciferase expression. The uptake and intracellular trafficing of siRNA were also investigated.

Results

Characterization studies revealed these rHDL nanoparticles had similar physical properties as natural HDLs. The various rHDL formulations had high silencing efficiency (more than 70% knockdown) in hepatocytes with minimum cytotoxicity. Moreover, the uptake of rHDL by SMMC-7721 was confirmed to be mediated through the natural HDL uptake pathway.

Conclusions

The work described here demonstrated the optimized rHDL nanoparticles may offer a promising tool for siRNA delivery to the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

apo A-I:

apolipoprotein A-I

PEI:

polyethyleneimine

PLL:

poly-L-lysine

RES system:

reticuloendothelial system

rHDL:

recombinant high density lipoprotein

REFERENCES

  1. Hannonand GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–8.

    Article  Google Scholar 

  2. Kimand DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.

    Article  Google Scholar 

  3. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6:443–53.

    Article  PubMed  Google Scholar 

  4. Chiu Y-L, Ali A, Chu C-Y, Cao H, Rana TM. Visualizing a Correlation between siRNA Localization, Cellular Uptake, and RNAi in Living Cells. Chem Biol. 2004;11:1165–75.

    Article  PubMed  CAS  Google Scholar 

  5. Guo JF, Bourre L, Soden DM, O’Sullivan GC, O’Driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv. 2011;29:402–17.

    Article  PubMed  CAS  Google Scholar 

  6. Semple SC, Akinc A, Chen JX, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kapoorand M, Burgess DJ. Efficient and safe delivery of siRNA using anionic lipids: Formulation optimization studies. Int J Pharm. 2012;432:80–90.

    Article  Google Scholar 

  8. Kim N, Jiang DH, Jacobi AM, Lennox KA, Rose SD, Behlke MA, et al. Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA. Int J Pharm. 2012;427:123–33.

    Article  PubMed  CAS  Google Scholar 

  9. Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, et al. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. Acs Nano. 2012;6:5174–89.

    Article  PubMed  CAS  Google Scholar 

  10. Kundu AK, Chandra PK, Hazari S, Ledet G, Pramar YV, Dash S, et al. Stability of lyophilized siRNA nanosome formulations. Int J Pharm. 2012;423:525–34.

    Article  PubMed  CAS  Google Scholar 

  11. Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, et al. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther J Am Soc Gene Ther. 2007;15:1145–52.

    CAS  Google Scholar 

  12. Lee H, Kim SI, Shin D, Yoon Y, Choi TH, Cheon GJ, et al. Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem Biophys Res Commun. 2009;378:192–6.

    Article  PubMed  CAS  Google Scholar 

  13. Yang M, Jin HL, Chen JA, Ding LL, Ng KK, Lin QY, et al. Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles. Small. 2011;7:568–73.

    Article  PubMed  CAS  Google Scholar 

  14. Kuwahara H, Nishina K, Yoshida K, Nishina T, Yamamoto M, Saito Y, et al. Efficient in vivo delivery of siRNA into brain capillary endothelial cells along with endogenous lipoprotein. Mol Ther. 2011;19:2213–21.

    Article  PubMed  CAS  Google Scholar 

  15. McMahon KM, Mutharasan RK, Tripathy S, Veliceasa D, Bobeica M, Shumaker DK, et al. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett. 2011;11:1208–14.

    Article  PubMed  CAS  Google Scholar 

  16. Fillion P, Desjardins A, Sayasith K, Lagace J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim Biophys Acta. 2001;1515:44–54.

    Article  PubMed  CAS  Google Scholar 

  17. Lakkaraju A, Dubinsky JM, Low WC, Rahman YE. Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem. 2001;276:32000–7.

    Article  PubMed  CAS  Google Scholar 

  18. Patiland SD, Rhodes DG. Conformation of oligodeoxynucleotides associated with anionic liposomes. Nucleic Acids Res. 2000;28:4125–9.

    Article  Google Scholar 

  19. Patil SD, Rhodes DG, Burgess DJ. Anionic liposomal delivery system for DNA transfection. AAPS J. 2004;6:e29.

    Article  PubMed  Google Scholar 

  20. Srinivasanand C, Burgess DJ. Optimization and characterization of anionic lipoplexes for gene delivery. J Control Release Off J Control Release Soc. 2009;136:62–70.

    Article  Google Scholar 

  21. Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP. Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J Control Release Off J Control Release Soc. 2009;133:132–8.

    Article  CAS  Google Scholar 

  22. Kulkarni VI, Shenoy VS, Dodiya SS, Rajyaguru TH, Murthy RR. Role of calcium in gene delivery. Expert Opin Drug Deliv. 2006;3:235–45.

    Article  PubMed  CAS  Google Scholar 

  23. Leeand RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem. 1996;271:8481–7.

    Article  Google Scholar 

  24. Mignet N, Richard C, Seguin J, Largeau C, Bessodes M, Scherman D. Anionic pH-sensitive pegylated lipoplexes to deliver DNA to tumors. Int J Pharm. 2008;361:194–201.

    Article  PubMed  CAS  Google Scholar 

  25. Ryan RO, Forte TM, Oda MN. Optimized bacterial expression of human apolipoprotein A-I. Protein Expr Purif. 2003;27:98–103.

    Article  PubMed  CAS  Google Scholar 

  26. Forteand TM, Nordhausen RW. Electron microscopy of negatively stained lipoproteins. Methods Enzymol. 1986;128:442–57.

    Article  Google Scholar 

  27. Yin SY, Li JJ, Hu C, Chen XH, Yao M, Yan MX, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.

    Article  PubMed  CAS  Google Scholar 

  28. Jonas A. [32] Reconstitution of high-density lipoproteins. In: Jere JJA, Segrest P, editors. Methods in enzymology, vol. 128. San Diego: Academic Press; 1986. p. 553–82.

  29. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  PubMed  CAS  Google Scholar 

  30. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–63.

    Article  PubMed  CAS  Google Scholar 

  31. Dominskaand M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–9.

    Article  Google Scholar 

  32. Guoand ST, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater. 2011;2011:12.

  33. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezon E, Champagne E, et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature. 2003;421:75–9.

    Article  PubMed  CAS  Google Scholar 

  34. Fabre AC, Malaval C, Ben Addi A, Verdier C, Pons V, Serhan N, et al. P2Y13 receptor is critical for reverse cholesterol transport. Hepatology. 2010;52:1477–83.

    Article  PubMed  CAS  Google Scholar 

  35. Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO. Ecto-F-1-ATPase: a moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol. 2010;16:5925–35.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by grants from the Natural Science Foundation of China No. 30825045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rui, M., Tang, H., Li, Y. et al. Recombinant High Density Lipoprotein Nanoparticles for Target-Specific Delivery of siRNA. Pharm Res 30, 1203–1214 (2013). https://doi.org/10.1007/s11095-012-0957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0957-4

KEY WORDS

Navigation