Skip to main content

Advertisement

Log in

Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most ‘professional’ antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AMs:

alveolar macrophages

APCs:

antigen presenting cells

BAL:

bronchoalveolar lavage

CLRs:

C-type lectin receptors

DCs:

dendritic cells

DPI:

dry powder inhalations

FD:

freeze-drying

HLA:

human leukocyte antigen

ILs:

interleukins

LN:

lymph node

MHC:

major histocompatibility complex

MN:

mannan

NPs:

nanoparticles

PCL:

poly-ε-caprolactone

PEG:

polyethylene glycol

PEI:

polyethyleneimine

PLA:

polylactide or poly-L-lactic acid

PLGA:

poly lactic-co-glycolic-acid

PRRs:

pattern recognition receptors

PVA:

polyvinyl alcohol

SCF:

supercritical fluid

SD:

spray-drying

SFD:

spray-freeze drying

TLRs:

toll-like receptors

TMC:

N-trimethyl chitosan

VLPs:

virus-like particles

References

  1. Brown LR. Commercial challenges of protein drug delivery. Expet Opin Drug Deliv. 2005;2:29–42.

    Article  Google Scholar 

  2. Sullivan VJ, Mikszta JA, Laurent P, Huang J, Ford B. Noninvasive delivery technologies: respiratory delivery of vaccines. Expet Opin Drug Deliv. 2006;3:87–95.

    Article  CAS  Google Scholar 

  3. Sou T, Meeusen EN, de Veer M, Morton DAV, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29:191–8.

    Article  PubMed  CAS  Google Scholar 

  4. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21:1428–39.

    Article  PubMed  CAS  Google Scholar 

  5. Rossi S, Sandri G, Caramella C. Buccal delivery systems for peptides: recent advances. Am J Drug Deliv. 2005;3:215–25.

    Article  CAS  Google Scholar 

  6. Shojaei AH, Chang RK, Guo X, Burnside BA, Couch RA. Systemic drug delivery via the buccal mucosal route. Pharm Tech:70–81 (2001).

  7. Kumria Rand GG. Emerging trends in insulin delivery: Buccal route. J Diabetol. 2011;2:1–9.

    Article  Google Scholar 

  8. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754–79.

    Article  PubMed  CAS  Google Scholar 

  9. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153:106–16.

    Article  PubMed  CAS  Google Scholar 

  10. Kalluriand H, Banga A. Transdermal delivery of proteins. AAPS PharmSciTech. 2011;12:431–41.

    Article  CAS  Google Scholar 

  11. Carstens MG. Opportunities and challenges in vaccine delivery. Eur J Pharm Sci. 2009;36:605–8.

    Article  PubMed  CAS  Google Scholar 

  12. Maurice J, Davey S. State of the world’s vaccines and immunization. http://www.unicef.org/media/files/SOWVI_full_report_english_LR1.pdf (accessed 17/02/2012 2012).

  13. W.H. Organization. World Health Statistics 2011 in WHO Statistical Information System (WHOSIS). http://www.who.int/whosis/whostat/2011/en/index.html (accessed 17/04 2012).

  14. Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expet Opin Drug Deliv. 2011;8:547–63.

    Article  CAS  Google Scholar 

  15. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med (2005).

  16. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:600–12.

    Article  PubMed  CAS  Google Scholar 

  17. Sanders M. Inhalation therapy: an historical review. Prim Care Respir J. 2007;16:71–81.

    Article  PubMed  Google Scholar 

  18. Mack GS. Pfizer dumps Exubera. Nat Biotech. 2007;25:1331–2.

    Article  CAS  Google Scholar 

  19. Onoue S, Hashimoto N, Yamada S. Dry powder inhalation systems for pulmonary delivery of therapeutic peptides and proteins. Expert Opin Ther Pat. 2008;18:429–42.

    Article  CAS  Google Scholar 

  20. de Swart RL, LiCalsi C, Quirk AV, van Amerongen G, Nodelman V, Alcock R, et al. Measles vaccination of macaques by dry powder inhalation. Vaccine. 2007;25:1183–90.

    Article  PubMed  CAS  Google Scholar 

  21. Fourie P, Germishuizen W, Wong Y-L, Edwards D. Spray drying TB vaccines for pulmonary administration. Expert Opin Biol Ther. 2008;8:857–63.

    Article  PubMed  CAS  Google Scholar 

  22. LiCalsi C, Maniaci MJ, Christensen T, Phillips E, Ward GH, Witham C. A powder formulation of measles vaccine for aerosol delivery. Vaccine. 2001;19:2629–36.

    Article  PubMed  CAS  Google Scholar 

  23. Amorij JP, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25:8707–17.

    Article  PubMed  CAS  Google Scholar 

  24. Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral. Mucosal and Cytokine Responses to Hepatitis B Vaccine. Mol Pharm. 2010;8:405–15.

    Article  CAS  Google Scholar 

  25. Effros RM. Anatomy, development, and physiology of the lungs. GI Motility online. 1: (2006).

  26. Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respir Physiol Neurobiol. 2008;163:128–38.

    Article  PubMed  Google Scholar 

  27. Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195–220.

    Article  PubMed  CAS  Google Scholar 

  28. Gehr P. Annexe A. Anatomy and morphology of the respiratory tract. Ann ICRP. 1994;24:121–66.

    Article  Google Scholar 

  29. Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev. 2006;58:996–1008.

    Article  PubMed  CAS  Google Scholar 

  30. Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. Systemic and Mucosal Immune Responses in Mice after Mucosal Immunization with Group B Streptococcus Type III Capsular Polysaccharide-Cholera Toxin B Subunit Conjugate Vaccine. Infect Immun. 2000;68:5749–55.

    Article  PubMed  CAS  Google Scholar 

  31. Ballester M, Nembrini C, Dhar N, de Titta A, de Piano C, Pasquier M, et al. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine. 2011;29:6959–66.

    Article  PubMed  CAS  Google Scholar 

  32. Muttil P, Pulliam B, Garcia-Contreras L, Fallon J, Wang C, Hickey A, et al. Pulmonary immunization of Guinea Pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J. 2010;12:699–707.

    Article  PubMed  CAS  Google Scholar 

  33. Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev. 2005;57:411–30.

    Article  PubMed  CAS  Google Scholar 

  34. Vermaelen K, Pauwels R. Pulmonary Dendritic Cells. Am J Respir Crit Care Med. 2005;172:530–51.

    Article  PubMed  Google Scholar 

  35. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  PubMed  CAS  Google Scholar 

  36. Nobelprize.org. The Nobel Prize in Physiology or Medicine 2011. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/ (accessed 19 Apr 2012).

  37. Lassila O, Vainio O, Matzinger P. Can B cells turn on virgin T cells? Nature. 1988;334:253–5.

    Article  PubMed  CAS  Google Scholar 

  38. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y-J, et al. Immunobiology of Dendritic Cells. Annu Rev Immunol. 2000;18:767–811.

    Article  PubMed  CAS  Google Scholar 

  39. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen Presentation and T Cell Stimulation by Dendritic Cells. Annu Rev Immunol. 2002;20:621–67.

    Article  PubMed  CAS  Google Scholar 

  40. Foged C, Sundblad A, Hovgaard L. Targeting Vaccines to Dendritic Cells. Pharm Res. 2002;19:229–38.

    Article  PubMed  CAS  Google Scholar 

  41. Lambrecht BN, Hammad H. Biology of Lung dendritic cells at the origin of asthma. Immunity. 2009;31:412–24.

    Article  PubMed  CAS  Google Scholar 

  42. GeurtsvanKessel CH, Lambrecht BN. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 2008;1:442–50.

    Article  PubMed  CAS  Google Scholar 

  43. Lommatzsch M, Bratke K, Bier A, Julius P, Kuepper M, Luttmann W, et al. Airway dendritic cell phenotypes in inflammatory diseases of the human lung. Eur Respir J. 2007;30:878–86.

    Article  PubMed  CAS  Google Scholar 

  44. Ba-Omar T, Al-Riyami B. Microscopic study of human alveolar macrophages. Microsc Microanal. 2008;14:1518–9.

    Google Scholar 

  45. Kiama SG, Cochand L, Karlsson L, Nicod LP, Gehr P. Evaluation of phagocytic activity in human monocyte-derived dendritic cells. J Aerosol Med. 2001;14:289–99.

    Article  PubMed  CAS  Google Scholar 

  46. von Garnier C, Nicod LP. Immunology taught by lung dendritic cells. Swiss Med Wkly. 2009;139:186–92.

    Google Scholar 

  47. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol. 2005;32:177–84.

    Article  PubMed  CAS  Google Scholar 

  48. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.

    Article  PubMed  CAS  Google Scholar 

  49. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine. 2003;21:883–90.

    Article  PubMed  CAS  Google Scholar 

  50. Burgdorf S, Lukacs-Kornek V, Kurts C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol. 2006;176:6770–6.

    PubMed  CAS  Google Scholar 

  51. Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RAD, et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci. 2010;107:4287–92.

    Article  PubMed  Google Scholar 

  52. Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, Locksley R, Huang X, Krummel MF. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. The Journal of Experimental Medicine (2012).

  53. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.

    Article  PubMed  CAS  Google Scholar 

  54. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–13.

    Article  PubMed  CAS  Google Scholar 

  55. Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27:573–9.

    Article  PubMed  CAS  Google Scholar 

  56. Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials. 2012;33:4229–39.

    Article  PubMed  CAS  Google Scholar 

  57. Caminschi I, Maraskovsky E, Heath WR. Targeting dendritic cells in vivo for cancer therapy. Frontiers in Immunology. 3: (2012).

  58. Carrillo-Conde B, Song E-H, Chavez-Santoscoy A, Phanse Y, Ramer-Tait AE, Pohl NLB, et al. Mannose-functionalized “Pathogen-like” polyanhydride nanoparticles target c-type lectin receptors on dendritic cells. Mol Pharm. 2011;8:1877–86.

    Article  PubMed  CAS  Google Scholar 

  59. Geijtenbeek TBH, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9:465–79.

    Article  PubMed  CAS  Google Scholar 

  60. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.

    Article  PubMed  CAS  Google Scholar 

  61. Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29:196–212.

    Article  PubMed  CAS  Google Scholar 

  62. Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine. 2008;3:1–19.

    Article  PubMed  CAS  Google Scholar 

  63. Smyth HDC, Smyth HH, Hickey AJ. Macro and Microstructure of the Airways for Drug Delivery in Controlled Pulmonary Drug Delivery, Springer, 2011.

  64. Heffernan MJ, Kasturi SP, Yang SC, Pulendran B, Murthy N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)–poly(cytidylic acid). Biomaterials. 2009;30:910–8.

    Article  PubMed  CAS  Google Scholar 

  65. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13:106–12.

    Article  PubMed  CAS  Google Scholar 

  66. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.

    Article  PubMed  CAS  Google Scholar 

  67. Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expet Opin Drug Deliv. 2008;5:629–39.

    Article  CAS  Google Scholar 

  68. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.

    Article  PubMed  CAS  Google Scholar 

  69. Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer. 2011;10:3.

    Article  PubMed  CAS  Google Scholar 

  70. Doria-Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods. 2003;31:207–16.

    Article  PubMed  CAS  Google Scholar 

  71. Bivas-Benita M, van Meijgaarden KE, Franken KLMC, Junginger HE, Borchard G, Ottenhoff THM, et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004;22:1609–15.

    Article  PubMed  CAS  Google Scholar 

  72. Jain JRA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90.

    Article  PubMed  CAS  Google Scholar 

  73. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  CAS  Google Scholar 

  74. Fiore VF, Lofton MC, Roser-Page S, Yang SC, Roman J, Murthy N, et al. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials. 2010;31:810–7.

    Article  PubMed  CAS  Google Scholar 

  75. Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon J, Wang C, et al. Immunization of Guinea Pigs with Novel Hepatitis B Antigen as Nanoparticle Aggregate Powders Administered by the Pulmonary Route. AAPS J. 2010;12:330–7.

    Article  PubMed  CAS  Google Scholar 

  76. Heffernan MJ, Murthy N. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjug Chem. 2005;16:1340–2.

    Article  PubMed  CAS  Google Scholar 

  77. Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N. Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem. 2008;19:1164–9.

    Article  PubMed  CAS  Google Scholar 

  78. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnol Biol Med. 2006;2:8–21.

    Article  CAS  Google Scholar 

  79. Singh J, Pandit S, Bramwell VW, Alpar HO. Diphtheria toxoid loaded poly-(ε-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods. 2006;38:96–105.

    Article  PubMed  CAS  Google Scholar 

  80. Mahapatro A, Singh D. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.

    Article  PubMed  CAS  Google Scholar 

  81. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877–95.

    Article  PubMed  CAS  Google Scholar 

  82. Lee JS, Hwang SJ, Lee DS, Kim SC, Kim DJ. Formation of Poly(ethylene glycol)-Poly(ε-caprolactone) Nanoparticles via Nanoprecipitation. Macromol Res. 2009;17:72–8.

    Article  CAS  Google Scholar 

  83. Ranjan AP, Zeglam K, Mukerjee A, Thamake S, Vishwanatha JK. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging. Nanotechnology. 2011;22:1–10.

    Article  CAS  Google Scholar 

  84. Allémann E, Gurny R, Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm. 1992;87:247–53.

    Article  Google Scholar 

  85. Muthu M. Nanoparticles based on PLGA and its co-polymer: An overview, 2009.

  86. Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm. 2002;233:239–52.

    Article  PubMed  CAS  Google Scholar 

  87. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  PubMed  CAS  Google Scholar 

  88. Bivas-Benita M, Romeijn S, Junginger HE, Borchard G. PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm. 2004;58:1–6.

    Article  PubMed  CAS  Google Scholar 

  89. Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KLMC, Friggen AH, et al. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine. 2009;27:4010–7.

    Article  PubMed  CAS  Google Scholar 

  90. Pulliam B, Sung JC, Edwards DA. Design of nanoparticle-based dry powder pulmonary vaccines. Expet Opin Drug Deliv. 2007;4:651–63.

    Article  CAS  Google Scholar 

  91. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    Article  PubMed  CAS  Google Scholar 

  92. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82:488–96.

    Article  PubMed  CAS  Google Scholar 

  93. O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng. 2001;18:69–85.

    Article  PubMed  Google Scholar 

  94. Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci. 2009;98:1278–316.

    Article  PubMed  CAS  Google Scholar 

  95. Amorij J-P, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W. Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release.

  96. Sekaly R-P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med. 2008;205:7–12.

    Article  PubMed  CAS  Google Scholar 

  97. Lewis DJM, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, et al. Transient facial nerve paralysis (Bell’s Palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4:e6999.

    Article  PubMed  CAS  Google Scholar 

  98. Vajdy M. Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems. Expert Opin Biol Ther. 2011;11:1501–13.

    Article  PubMed  CAS  Google Scholar 

  99. Skountzou I, Quan F-S, Jacob J, Compans RW, Kang S-M. Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine. 2006;24:6110–9.

    Article  PubMed  CAS  Google Scholar 

  100. Nottenburg C. Types of adjuvants: In Introduction to Adjuvant Patent Landscape. http://www.patentlens.net/daisy/adjuvants/Background/Adjuvant_types.html (accessed 14th April 2012).

  101. Wee JLK, Scheerlinck JPY, Snibson KJ, Edwards S, Pearse M, Quinn C, et al. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol. 2008;1:489–96.

    Article  PubMed  CAS  Google Scholar 

  102. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.

    Article  PubMed  CAS  Google Scholar 

  103. LiCalsi C, Christensen T, Bennett JV, Phillips E, Witham C. Dry powder inhalation as a potential delivery method for vaccines. Vaccine. 1999;17:1796–803.

    Article  PubMed  CAS  Google Scholar 

  104. Mansour HM, Rhee Y, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.

    Article  PubMed  CAS  Google Scholar 

  105. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.

    Article  PubMed  CAS  Google Scholar 

  106. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

    Article  PubMed  CAS  Google Scholar 

  107. Anhorn MG, Mahler H-C, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9.

    Article  PubMed  CAS  Google Scholar 

  108. Hirsjärvi S, Peltonen L, Hirvonen J. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of Poly(lactic acid) nanoparticles. AAPS PharmSciTech. 2009;10:488–94.

    Article  PubMed  CAS  Google Scholar 

  109. Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharmaceut Sci Tech Today. 1998;1:394–8.

    Article  CAS  Google Scholar 

  110. Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expet Opin Drug Deliv. 2010;7:705–19.

    Article  CAS  Google Scholar 

  111. Heng D, Lee SH, Ng WK, Tan RB. The nano spray dryer B-90. Expet Opin Drug Deliv. 2011;8:965–72.

    Article  CAS  Google Scholar 

  112. Amorij JP, Huckriede A, Wilschut J, Frijlink H, Hinrichs W. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25:1256–73.

    Article  PubMed  CAS  Google Scholar 

  113. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58:1009–29.

    Article  PubMed  CAS  Google Scholar 

  114. Al-fagih IM, Alanazi FK, Hutcheon GA, Saleem IY. Recent advances using supercritical fluid techniques for pulmonary administration of macromolecules via dry powder formulations. Drug Deliv Lett. 2011;1:128–34.

    CAS  Google Scholar 

  115. Okamoto H, Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv Drug Deliv Rev. 2008;60:433–46.

    Article  PubMed  CAS  Google Scholar 

  116. Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev. 2008;60:299–327.

    Article  PubMed  CAS  Google Scholar 

  117. Kenji M. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev. 2008;60:411–32.

    Article  CAS  Google Scholar 

  118. Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev. 2008;60:399–410.

    Article  PubMed  CAS  Google Scholar 

  119. Amidi M, Pellikaan HC, Hirschberg H, de Boer AH, Crommelin DJA, Hennink WE, et al. Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. Vaccine. 2007;25:6818–29.

    Article  PubMed  CAS  Google Scholar 

  120. W.H. Organization. Pneumonia. http://www.who.int/mediacentre/factsheets/fs331/en/index.html (accessed 17/04 2012).

  121. Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target. 2011;19:281–92.

    Article  PubMed  CAS  Google Scholar 

  122. Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32:3094–105.

    Article  PubMed  CAS  Google Scholar 

  123. Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. 2010;144:118–26.

    Article  PubMed  CAS  Google Scholar 

  124. Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A. 2005;102:18264–8.

    Article  PubMed  CAS  Google Scholar 

  125. Kempf M, Mandal B, Jilek S, Thiele L, Vörös J, Textor M, et al. Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles. J Drug Target. 2003;11:11–8.

    Article  PubMed  CAS  Google Scholar 

  126. Sheng K-C, Kalkanidis M, Pouniotis DS, Esparon S, Tang CK, Apostolopoulos V, et al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur J Immunol. 2008;38:424–36.

    Article  PubMed  CAS  Google Scholar 

  127. White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol. 2006;58:729–37.

    Article  PubMed  CAS  Google Scholar 

  128. Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res. 2006;16:331–45.

    Article  PubMed  CAS  Google Scholar 

  129. Hao J, Kwissa M, Pulendran B, Murthy N. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. Int J Nanomedicine. 2006;1:97–103.

    Article  PubMed  CAS  Google Scholar 

  130. Lu D, Hickey AJ. Liposomal dry powders as aerosols for pulmonary delivery of proteins. AAPS PharmSciTech. 2005;6:E641–8.

    Article  PubMed  Google Scholar 

  131. Barnier Quer C, Robson Marsden H, Romeijn S, Zope H, Kros A, Jiskoot W. Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polym Chem. 2011;2:1482–5.

    Article  CAS  Google Scholar 

  132. Matinkhoo S, Lynch KH, Dennis JJ, Finlay WH, Vehring R. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci. 2011;100:5197–205.

    Article  PubMed  CAS  Google Scholar 

  133. Saluja V, Amorij JP, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33.

    Article  PubMed  CAS  Google Scholar 

  134. Jin TH, Tsao E, Goudsmit J, Dheenadhayalan V, Sadoff J. Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). Vaccine. 2010;28:4369–75.

    Article  PubMed  CAS  Google Scholar 

  135. Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J, et al. Immunization by a bacterial aerosol. Proc Natl Acad Sci. 2008;105:4656–60.

    Article  PubMed  CAS  Google Scholar 

  136. Lu D, Garcia-Contreras L, Muttil P, Padilla D, Xu D, Liu J, et al. Pulmonary Immunization Using Antigen 85-B Polymeric Microparticles to Boost Tuberculosis Immunity. AAPS J. 2010;12:338–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Y. Saleem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunda, N.K., Somavarapu, S., Gordon, S.B. et al. Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery. Pharm Res 30, 325–341 (2013). https://doi.org/10.1007/s11095-012-0891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0891-5

KEY WORDS

Navigation