Skip to main content
Log in

Microstructural Elucidation of Self-Emulsifying System: Effect of Chemical Structure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Self-emulsifying systems (SES) emulsify spontaneously to produce fine oil-in-water emulsion when introduced into aqueous phase. The self-emulsification process plays an important role during formation of emulsion. The objective of current work was to understand and explore the inner structuration of SES through controlled hydration and further to study the influence of additive on the same which ultimately governs performance of final formulation in terms of droplet size.

Methods

Droplet size of final formulations containing structural analogues of ibuprofen was determined. Microstructural properties of intermediate hydrated regimes of SES were investigated using techniques such as small angle X-ray scattering, differential scanning calorimetry and rheology.

Results

The current work established inverse relationship between droplet size of the formulations containing structural analogues of ibuprofen and their Log P values. Microstructural analysis of intermediate hydrated regimes of the prepared samples showed formation of local lamellar structure. Structural analogues of ibuprofen significantly altered microstructure of lamellae which was well correlated with the droplet size of final formulations. In vitro drug release study showed increase in dissolution rate of lipophillic drugs when formulated as SES.

Conclusion

The current work emphasizes the fact that tailor-made formulations can be prepared by controlling the properties of intermediate regimes.

Techniques used for Microstructural Elucidation of Self-Emulsifying System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Charman S, Charman W, Rogge M, Wilson T, Pouton C. Self-emulsifying drug delivery systems: formulation and biopharmaceutical evaluation of an investigational lipophilic compound. Pharm Res. 1992;9:87–93.

    Article  PubMed  CAS  Google Scholar 

  2. Pouton C. Lipid formulations for oral administration of drugs: nonemulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11:S93–8.

    Article  PubMed  CAS  Google Scholar 

  3. Pouton C, Porter C. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–37.

    Article  PubMed  CAS  Google Scholar 

  4. Reiss H. Entropy induced dispersion of bulk liquids. J Colloid Interface Sci. 1975;53:61–70.

    Article  Google Scholar 

  5. Groves M, De Galindez D. The self-emulsifying action of mixed surfactants in oil. Acta Pharm Suec. 1976;13:361–72.

    PubMed  CAS  Google Scholar 

  6. Wakerly M, Pouton C, Meakin B. Evaluation of the self-emulsifying performance of a non-ionic surfactant-vegetable oil mixture. J Pharm Pharmacol. 1987;39:6–10.

    Google Scholar 

  7. Craig D, Barker S, Banning D, Booth S. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 1995;114:103–10.

    Article  CAS  Google Scholar 

  8. Rang M, Miller C. Spontaneous emulsification of oils containing hydrocarbon, non-ionic surfactant, and oleyl alcohol. J Colloid Interface Sci. 1999;209:179–92.

    Article  PubMed  CAS  Google Scholar 

  9. Biradar S, Dhumal R, Paradkar A. Rheological investigation of self-emulsification process. J Pharm Pharm Sci. 2009;12(1):17–31.

    PubMed  CAS  Google Scholar 

  10. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Probing influence of mesophasic transformation in self-emulsifying system: effect of ion. Mol Pharm. 2012;9(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  11. Rosevear F. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;31:628–39.

    Article  CAS  Google Scholar 

  12. Teubner M, Strey R. Origin of the scattering peak in microemulsions. J Chem Phys. 1987;87(5):3195–200.

    Article  CAS  Google Scholar 

  13. Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  14. Pouton C. Formulation of self emulsifying drug delivery system. Adv Drug Deliv Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  15. Glatter O, Strey R, Schubert K, Kaler E. Small-angle scattering applied to microemulsions. Ber Bunsen-Ges Phys Chem. 1996;100:323–35.

    CAS  Google Scholar 

  16. Glatter O, Orthaber D, Stradner A, Scherf G, Fanun M, Garti N, Clement V, Leser M. Sugar-Ester nonionic microemulsion :structural characterization. J Colloid Interface Sci. 2001;241:215–25.

    Article  PubMed  CAS  Google Scholar 

  17. Salonen A, Muller F, Glatter O. Dispersions of internally liquid crystalline systems stabilized by charged disklike particles as pickering emulsions: basic properties and time-resolved behavior. Langmuir. 2008;24(10):5306–14.

    Article  PubMed  CAS  Google Scholar 

  18. Chen S, Chang S. Structural evolution of bicontlnuous microemulsions. J Phys Chem. 1991;95:7427–32.

    Article  CAS  Google Scholar 

  19. Bauer C, Bauduin P, Diat O, Zemb T. Liquid interface functionalized by an ion extractant: the case of winsor III microemulsions. Langmuir. 2011;27(5):1653–61.

    Article  PubMed  CAS  Google Scholar 

  20. Regev O, Ezrahi S, Aserin A, Garti N, Wachtel E, Kaler E, Khan A, Talmon Y. A study of the microstructures of a four component non-ionic microemulsion by cryo TEM, NMR, SAXS and SANS. Langmuir. 1996;12:668–74.

    Article  CAS  Google Scholar 

  21. Cabos C, Marignan D. Local lamellar structure in dense microemulsions. J Phys Rev B. 1988;37:9796–9.

    Article  CAS  Google Scholar 

  22. Constantinides P, Scalart J, Lancaster C, Marcello J, Marks G, Ellens H, Smith P. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res. 1994;1(10):1385–90.

    Article  Google Scholar 

  23. Beetge E, Plessis E, Muller D, Goosen C, Rensburg F. The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID’S on their transdermal absorption. Int J Pharm. 2000;193:261–4.

    Article  PubMed  CAS  Google Scholar 

  24. Li Q, Tsuji H, Kato Y, Sai Y, Kubo Y, Tsuji A. Characterization of the transdermal transport of flurbiprofen and indomethacin. J Contr Release. 2006;110:542–56.

    Article  CAS  Google Scholar 

  25. Sinko P. Colloids. Physical pharmacy. 5th ed. New Delhi: Wolters Kluwer Health (India) Pvt. Ltd; 2007. p. 488–9.

    Google Scholar 

  26. Senatra D, Lendinara L, Giri M. W/O microemulsions as model systems for the study of water confined in microenvironments: Low resolution 1H magnetic resonance relaxation analysis. Progr Colloid Polymer Sci. 1991;84:122–8.

    Article  CAS  Google Scholar 

  27. Ezrahi S, Aserin A, Fanun M, Garti N. Subzero temperature behaviour of water in microemulsions. In: Garti N, editor. Thermal behaviour of dispersed systems: surfactant science series, Vol. 93. New York: Marcel Dekker; 2001. p. 59–120.

    Google Scholar 

  28. Kogan A, Shalev D, Raviv U, Aserin A, Garti N. Formation and characterization of ordered bicontinuous microemulsions. J Phys Chem B. 2009;113:10669–78.

    Article  PubMed  CAS  Google Scholar 

  29. Ulrich A, Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994;66:1441–9.

    Article  PubMed  CAS  Google Scholar 

  30. Mezzenga R, Meyer C, Servais C, Romoscanu A, Sagalowicz L, Hayward R. Shear rheology of Lyotropic liquid crystals: a case study. Langmuir. 2005;21(8):3322–33.

    Article  PubMed  CAS  Google Scholar 

  31. Negrini R, Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27:5296–303.

    Article  PubMed  CAS  Google Scholar 

  32. Patil P, Joshi P, Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self emulsifying drug delivery system of Ketoprofen. AAPS PharmSci. 2004;5(3):1–8.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors thank Dr. Guruswamy Kumaraswamy, Scientist, Polymer Chemistry, National Chemical Laboratory for providing facility of Small Angle X ray Scattering and for extending his cooperation in SAXS data analysis and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kakasaheb R. Mahadik or Anant R. Paradkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, S.S., Venugopal, E., Bhat, S. et al. Microstructural Elucidation of Self-Emulsifying System: Effect of Chemical Structure. Pharm Res 29, 2180–2188 (2012). https://doi.org/10.1007/s11095-012-0746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0746-0

KEY WORDS

Navigation