Skip to main content
Log in

Promoted Transfection Efficiency of pDNA Polyplexes-Loaded Biodegradable Microparticles Containing Acid-Labile Segments and Galactose Grafts

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Targeting to antigen-presenting cells and efficient intracellular delivery of pDNA are essential for development of microsphere formulations of DNA vaccine.

Methods

Biodegradable polymers containing acid-labile segments and galactose grafts were developed to entrap pDNA polyplexes into microspheres, which were proposed to promote transfection efficiency of pDNA.

Results

Acid-labile characteristics were approved by the hemolysis capabilities of red blood cells and degradation behaviors of matrix polymers; release of pDNA polyplexes from microspheres was significantly accelerated after incubation in acid buffers. Presence of galactose moieties enhanced cellular uptake of microspheres and increased acid-lability due to hydrophilic grafts on acid-labile segments. There was no apparent cytotoxicity of blank microspheres; cytotoxicity of pDNA polyplexes was significantly decreased after encapsulation into and sustained release from microspheres. High transfection efficiency and a dose-dependent transfection were indicated for pDNA polyplex-loaded acid-labile microspheres when balancing with cytotoxicity.

Conclusions

Integration of acid-lability, targeting effect into full biodegradable backbone represents an exciting approach to promote transfection efficiency through modulating release of pDNA polyplexes, targeting to antigen-presenting cells and intracellular delivery of pDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Cui Z. DNA vaccine. Adv Genet. 2005;54:257–89.

    Article  PubMed  CAS  Google Scholar 

  2. McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, Butcher G, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003;9:729–35.

    Article  PubMed  CAS  Google Scholar 

  3. O’Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. J Immunol Methods. 2006;40:10–9.

    Google Scholar 

  4. Vidard L, Kovacsovics-Bankowski M, Kraeft SK, Chen LB, Benacerraf B, Rock KL. Analysis of MHC class II presentation of particulate antigens of B lymphocytes. J Immunol. 1996;156:2809–18.

    PubMed  CAS  Google Scholar 

  5. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjugate Chem. 2003;14:412–9.

    Article  CAS  Google Scholar 

  6. Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999;59:1180–3.

    PubMed  CAS  Google Scholar 

  7. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Bi. 1996;12:575–625.

    Article  CAS  Google Scholar 

  8. Garripelli VK, Kim JK, Namgung R, Kim WJ, Repka MA, Jo S. A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomater. 2010;6:477–85.

    Article  PubMed  CAS  Google Scholar 

  9. Lin S, Du FS, Wang Y, Ji SP, Liang DH, Yu L, et al. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules. 2008;9:109–15.

    Article  PubMed  CAS  Google Scholar 

  10. Walter E, Moelling K, Pavlovic J, Merkle HP. Microencapsulation of DNA using poly(DL-lactide-co-glycolide): stability issues and release characteristics. J Control Release. 1999;61:361–74.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biot. 2003;62:27–34.

    Article  CAS  Google Scholar 

  12. Nguyen DN, Raghavan SS, Tashima LM, Lin EC, Fredette SJ, Langer RS, et al. Enhancement of poly (orthoester) microspheres for DNA vaccine delivery by blending with poly(ethylenimine). Biomaterials. 2008;29:2783–93.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang XQ, Intra J, Salem AK. Comparative study of poly(lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul. 2008;25:1–12.

    Article  PubMed  Google Scholar 

  14. Yang Y, Li XH, Cheng L, He SH, Zou J, Chen F, et al. Core-sheath-structured fibers with pDNA polyplex loadings for optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater. 2011;7:2533–43.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou XF, Liu B, Yu XH, Zha X, Zhang XZ, Chen Y, et al. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release. 2007;121:200–7.

    Article  PubMed  CAS  Google Scholar 

  16. Walbrun P, Hellerbrand C, Weiss TS, Netter S, Neumaier D, Gaebele E, et al. Characterization of rat and human Kupffer cells after cryopreservation. Cryobiology. 2007;54:164–72.

    Article  PubMed  CAS  Google Scholar 

  17. Popielarski SR, Hu-Lieskovan S, French SW, Triche TJ, Davis ME. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjugate Chem. 2005;16:1071–80.

    Article  CAS  Google Scholar 

  18. Dong L, Gao SY, Diao HJ, Chen JN, Zhang JF. Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo. J Biomed Mater Res A. 2008;84:777–84.

    PubMed  Google Scholar 

  19. Cui WG, Qi MB, Li XH, Huang SZ, Zhou SB, Weng J. Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm. 2008;361:47–55.

    Article  PubMed  CAS  Google Scholar 

  20. Deng XM, Li XH, Yuan ML, Xiong CD, Huang ZT, Jia WX, et al. Optimization of preparative conditions for poly-DL-lactide-polyethylene glycol microspheres with entrapped Vibrio Cholera antigens. J Control Release. 1999;58:123–31.

    Article  PubMed  CAS  Google Scholar 

  21. Deng XM, Zhou SB, Li XH, Zhao J, Yuan ML. In vitro degradation and release profiles for poly-dl-lactide-poly(ethylene glycol) microspheres containing human serum albumin. J Control Release. 2001;71:165–73.

    Article  PubMed  CAS  Google Scholar 

  22. Ding CX, Gu JX, Qu XZ, Yang ZZ. Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker. Bioconjugate Chem. 2009;20:1163–70.

    Article  CAS  Google Scholar 

  23. Nagelkerke JF, Barto KP, van Berkel TJ. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial Kupffer and parenchymal cells. J Biol Chem. 1983;258:12221–7.

    PubMed  CAS  Google Scholar 

  24. Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine) for gene delivery. Proc Natl Acad Sci USA. 1999;96:5177–81.

    Article  PubMed  CAS  Google Scholar 

  25. Makino K, Yamamoto N, Higuchi K, Harada N, Ohshima H, Terada H. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloid Surf B. 2003;27:33–9.

    Article  CAS  Google Scholar 

  26. Lei Y, Segura T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials. 2009;30:254–65.

    Article  PubMed  CAS  Google Scholar 

  27. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus like gene transfer systems. J Biol Chem. 1994;269:12918–24.

    PubMed  CAS  Google Scholar 

  28. Lee RJ, Wang SS, Low PS. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta. 1996;1312:237–42.

    Article  PubMed  Google Scholar 

  29. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polymethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2004;7:657–63.

    Article  Google Scholar 

  30. Artursson P, Arro E, Edman P, Ericsson JLE, Sjöholm I. Biodegradable microspheres V: stimulation of macrophages with microparticles made of various polysaccharides. J Pharm Sci. 1987;76:127–33.

    Article  PubMed  CAS  Google Scholar 

  31. Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D, L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci. 2010;99:368–84.

    Article  PubMed  CAS  Google Scholar 

  32. Ernst JD, Stendahl O. Phagocytosis of bacteria and bacterial pathogenicity. New York: Cambridge University Press; 2006.

    Book  Google Scholar 

  33. Nie H, Wang CH. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release. 2007;120:111–21.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by National Natural Science Foundation of China (30570501, 20774075, and 51073130), and Fundamental Research Funds for the Central Universities (SWJTU09ZT21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Li.

Electronic supplementary material

The particular synthesis and characterization results of PGBELA were included in the supplementary materials.

ESM 1

(PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Cai, X., Yang, Y. et al. Promoted Transfection Efficiency of pDNA Polyplexes-Loaded Biodegradable Microparticles Containing Acid-Labile Segments and Galactose Grafts. Pharm Res 29, 471–482 (2012). https://doi.org/10.1007/s11095-011-0577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0577-4

KEY WORDS

Navigation