Skip to main content

Advertisement

Log in

Albumin-Coated Porous Hollow Poly(Lactic-co-Glycolic Acid) Microparticles Bound with Palmityl-Acylated Exendin-4 as a Long-Acting Inhalation Delivery System for the Treatment of Diabetes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To study the development of porous poly(lactic-co-glycolic acid) microparticles (PLGA MPs) coated initially with albumin and then with palmityl-acylated exendin-4 (Pal-Ex4) as an inhalation system for treating diabetes.

Methods

Porous PLGA MPs were prepared by w/o/w double emulsification using hydroxypropyl-β-cyclodextrin and poly(ethylene-alt-maleic anhydride). Albumin was covalently attached to the MPs using EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide); Pal-Ex4 was then bound on the albumin surface. Albumin-binding degree and aerosolization efficiency were investigated. Deposition of the MPs after insufflations into the lungs of ICR mice was observed by image monitoring, and pulmonary hypoglycemic efficacies were examined in db/db mice. Cytotoxicity and histopathology induced by MPs were examined in Calu-3 and A549 cells and in the lungs of db/db mice, respectively.

Results

Albumin-coating and Pal-Ex4-binding to porous MP were performed with acceptable efficiencies. Pal-Ex4-bound albumin-coated MPs (Pal-Ex4/HSA-PLGA MP) were of high porosity and had appropriate aerodynamic sizes. Furthermore, this MP was efficiently deposited throughout mouse lungs, and exhibited a prolonged hypoglycemia and no significant lung tissue damage in db/db mice.

Conclusion

Pal-Ex4/HSA-PLGA MP demonstrated many meaningful pharmaceutical advantages for the treatment of diabetes, in terms of aerosolization efficiency, drug loading, sustained drug-release, and hypoglycemic duration in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Cleland JL, Daugherty A, Mrsny R. Emerging protein delivery methods. Curr Opin Biotechnol. 2001;12(2):212–9.

    Article  PubMed  CAS  Google Scholar 

  2. Ho RJY, Gibaldi M. Advanced drug delivery. In: Ho RJY, Gibaldi M, editors. Biotechnology and biopharmaceuticals. Wiley-Liss; 2003. p. 339–80.

  3. Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev. 1999;35(2–3):249–57.

    Article  PubMed  CAS  Google Scholar 

  4. Youn YS, Kwon MJ, Na DH, Chae SY, Lee S, Lee KC. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. J Control Release. 2008;125(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  5. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–44.

    Article  PubMed  CAS  Google Scholar 

  6. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209.

    Article  PubMed  CAS  Google Scholar 

  7. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  8. Adjei A, Adjei AL, Gupta PK. Inhalation delivery of therapeutic peptides and proteins. New York: Marcel Dekker Inc.; 1997. p. 107–15.

    Google Scholar 

  9. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.

    Article  PubMed  CAS  Google Scholar 

  10. Lee ES, Kwon MJ, Lee H, Na K, Kim JJ. In vitro study of lysozyme in poly(lactide-co-glycolide) microspheres with sucrose acetate isobutyrate. Eur J Pharm Sci. 2006;29(5):435–41.

    Article  PubMed  CAS  Google Scholar 

  11. Kwon MJ, Bae JH, Kim JJ, Na K, Lee ES. Long acting porous microparticles for pulmonary drug delivery. Int J Pharm. 2007;333(1–2):5–9.

    Article  PubMed  CAS  Google Scholar 

  12. Lee ES, Kwon MJ, Na K, Bae JH. Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids Surfs B. 2007;55(1):125–30.

    Article  CAS  Google Scholar 

  13. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  PubMed  CAS  Google Scholar 

  14. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 1998;85(2):379–85.

    PubMed  CAS  Google Scholar 

  15. Youn YS, Lee KC, Bae YH, Na K, Lee ES. Advanced pulmonary delivery of peptides or proteins using polymeric particles. In: Jorgensen L, Nielson HM, editors. Delivery technologies for biopharmaceuticals: Peptides, proteins, nucleic acids, and vaccines. WILEY; 2009. p. 228–44.

  16. Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release. 2006;112(2):167–74.

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30(10):1947–53.

    Article  PubMed  CAS  Google Scholar 

  18. Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27(2):152–9.

    Article  PubMed  Google Scholar 

  19. Available from: http://www.mannkindcorp.com/afresa-background.aspx.

  20. Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  21. Ungaro F, De Rosa G, Miro A, Quaglia F, La Rotonda MI. Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur J Pharm Sci. 2006;28(5):423–32.

    Article  PubMed  CAS  Google Scholar 

  22. Davidson MB, Bate G, Kirkpatrick P. Exenatide. Nat Rev Drug Discov. 2005;4(9):713–4.

    Article  PubMed  CAS  Google Scholar 

  23. Edwards CM, Stanley SA, Davis R, Brynes AE, Frost GS, Seal LJ, et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol. 2001;281(1):155–61.

    Google Scholar 

  24. Keegan ME, Falcone JL, Leung TC, Saltzman WM. Biodegradable microspheres with enhanced capacity for covalently bound surface ligands. Macromolecules. 2004;37(26):9779–84.

    Article  CAS  Google Scholar 

  25. Chung HJ, Kim HK, Yoon JJ, Park TG. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res. 2006;23(8):1835–41.

    Article  PubMed  CAS  Google Scholar 

  26. Chae SY, Jin CH, Shin JH, Son S, Kim TH, Lee S, et al. Biochemical, pharmaceutical and therapeutic properties of long-acting lithocholic acid derivatized exendin-4 analogs. J Control Release. 2010;142(2):206–13.

    Article  PubMed  CAS  Google Scholar 

  27. Chae SY, Choi YG, Son S, Jung SY, Lee DS, Lee KC. The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics. J Control Release. 2010;144(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  28. Kim I, Kim TH, Ma K, Lee ES, Kim D, Oh KT, et al. Synthesis and evaluation of human serum albumin-modified exendin-4 conjugate via heterobifunctional polyethylene glycol linkage with protracted hypoglycemic efficacy. Bioconjug Chem. 2010;21(8):1513–19.

    Article  PubMed  CAS  Google Scholar 

  29. Kim TH, Jiang HH, Youn YS, Park CW, Lim SM, Jin CH, et al. Preparation and characterization of Apo2L/TNF-related apoptosis-inducing ligand-loaded human serum albumin nanoparticles with improved stability and tumor distribution. J Pharm Sci. 2011;100(2):482–91.

    Article  PubMed  CAS  Google Scholar 

  30. Rawat A, Majumder QA, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: In vitro and in vivo evaluation. J Control Release. 2008;128(3):224–32.

    Article  PubMed  CAS  Google Scholar 

  31. Morello M, Krone CL, Dickerson S, Howerth E, Germishuizen WA, Wong YL, et al. Dry-powder pulmonary insufflation in the mouse for application to vaccine or drug studies. Tuberculosis. 2009;89(5):371–7.

    Article  PubMed  CAS  Google Scholar 

  32. Kim H, Park H, Lee J, Kim TH, Lee ES, Oh KT, et al. Highly porous large poly(lactic-co-glycolic acid) microspheres adsorbed with palmityl-acylated exendin-4 as a long-acting inhalation system for treating diabetes. Biomaterials. 2011;32(6):1685–93.

    Article  PubMed  CAS  Google Scholar 

  33. Lee KC, Chae SY, Kim TH, Lee S, Lee ES, Youn YS. Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent. Regul Pept. 2009;152(1–3):101–7.

    Article  PubMed  CAS  Google Scholar 

  34. Chae SY, Chun YG, Lee S, Jin CH, Lee ES, Lee KC, et al. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J Pharm Sci. 2009;98(4):1556–67.

    Article  PubMed  CAS  Google Scholar 

  35. Naidoo K, Rolfes H, Easton K, Moolman S, Chetty A, Richter W, et al. An emulsion preparation for novel micro-porous polymeric hemi-shells. Mater Lett. 2008;62(2):252–4.

    Article  CAS  Google Scholar 

  36. Bosquillon C, Lombry C, Préat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  PubMed  CAS  Google Scholar 

  37. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  PubMed  CAS  Google Scholar 

  38. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  PubMed  CAS  Google Scholar 

  39. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42.

    Article  PubMed  CAS  Google Scholar 

  40. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.

    Article  PubMed  CAS  Google Scholar 

  41. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci. 2008;101:122–31.

    Article  PubMed  CAS  Google Scholar 

  42. Huang YC, Vieira A, Huang KL, Yeh MK, Chiang CH. Pulmonary inflammation caused by chitosan microparticles. J Biomed Mater Res A. 2005;75:283–7.

    PubMed  CAS  Google Scholar 

  43. Fineberg SE, Kawabata T, Finco-Kent D, Liu C, Krasner A. Antibody response to inhaled insulin in patients with type 1 or type 2 diabetes. An analysis of initial phase II and III inhaled insulin (Exubera) trials and a two-year extension trial. J Clin Endocrinol Metab. 2005;90:3287–94.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a grant of the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs (A092018), and by a grant of the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (no. 2010–0028167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Seok Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Lee, J., Kim, T.H. et al. Albumin-Coated Porous Hollow Poly(Lactic-co-Glycolic Acid) Microparticles Bound with Palmityl-Acylated Exendin-4 as a Long-Acting Inhalation Delivery System for the Treatment of Diabetes. Pharm Res 28, 2008–2019 (2011). https://doi.org/10.1007/s11095-011-0427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0427-4

KEY WORDS

Navigation