Skip to main content
Log in

Formation of Protein Nano-Matrix Particles with Controlled Surface Architecture for Respiratory Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To produce and examine the aerosol performance of protein nano-matrix particles with different surface roughness.

Methods

Aqueous lysozyme solutions were poured into isopropanol during high-shear mixing to produce nanoparticles by precipitation. The size of the nanoparticles was varied by adjusting the precipitation conditions. The resultant suspensions were spray-dried to obtain micron-sized aggregates (nano-matrices). Smooth particles were made by spray-drying a lysozyme solution. The aggregate size distribution, surface roughness, and cohesion were evaluated. The aerosol performance was assessed by dispersing 10 mg of powder from a Rotahaler® at 60 L/min or an Aerolizer® at 100 L/min into a Next Generation Impactor, followed by chemical assay (n = 3).

Results

The median volume diameter and span of the nano-matrix particles were 1.0–1.2 μm and 1.5–1.6, respectively, which were comparable to those of the smooth particles. Surface roughness increased with the size of the primary nanoparticles. The nano-matrix particles were significantly less cohesive than the smooth particles. The fine particle fraction increased linearly with increasing surface roughness and decreasing cohesion.

Conclusions

Nano-matrix particles with controlled surface architecture were successfully produced by spray-drying nanosuspensions. Aerosol performance was enhanced with increasing surface roughness due to the reduction in cohesion forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Chan H-K. Dry powder aerosol drug delivery—Opportunities for colloid and surface scientists. Colloids Surf, A. 2006;284–285:50–5.

    Article  Google Scholar 

  2. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  PubMed  CAS  Google Scholar 

  3. Clark AR, Stevenson CL, Shire SJ. Formulation of proteins for pulmonary delivery. In: McNally EJ, Hastedt JE, editors. Protein formulation and delivery. New York: Informa Healthcare USA; 2008. p. 219–54.

    Google Scholar 

  4. Gonda I. Targeting by deposition. In: Hickey A, editor. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker; 2004. p. 65–88.

    Google Scholar 

  5. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, et al. Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci. 2007;96:1282–301.

    Article  PubMed  CAS  Google Scholar 

  6. Chan H-K, Clark A, Gonda I, Mumenthaler M, Hsu C. Spray dried powders and powder blends of recombinant human deoxyribonuclease (rhDNase) for aerosol delivery. Pharm Res. 1997;14:431–97.

    Article  PubMed  CAS  Google Scholar 

  7. Chan H-K. Inhalation drug delivery devices and emerging technologies. Expert Opin Ther Pat. 2003;13:1333–43.

    Article  CAS  Google Scholar 

  8. Adi H, Traini D, Chan H-K, Young PM. The influence of drug morphology on the aerosolisation efficiency of dry powder inhaler formulations. J Pharm Sci. 2008;97:2780–8.

    Article  PubMed  CAS  Google Scholar 

  9. Adi S, Adi H, Tang P, Traini D, Chan H-K, Young PM. Micro-particle corrugation, adhesion and inhalation aerosol efficiency. Eur J Pharm Sci. 2008;35:12–8.

    Article  PubMed  CAS  Google Scholar 

  10. Chew NYK, Chan H-K. Use of solid corrugated particles enhance powder aerosol performance. Pharm Res. 2001;18:1570–7.

    Article  PubMed  CAS  Google Scholar 

  11. Chew NYK, Tang P, Chan H-K, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22:148–52.

    Article  PubMed  CAS  Google Scholar 

  12. Rogueda PGA, Traini D. The nanoscale in pulmonary delivery. Part 2: formulation platforms. Expert Opin Drug Deliv. 2007;4:607–20.

    Article  PubMed  CAS  Google Scholar 

  13. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci. 1986;17:811–25.

    Article  Google Scholar 

  14. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci. 2002;99:12001–5.

    Article  PubMed  CAS  Google Scholar 

  15. Hadinoto K, Zhu K, Tan RBH. Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm. 2007;341:195–206.

    Article  PubMed  CAS  Google Scholar 

  16. Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N. Dexamethasone acetate encapsulation into Trojan particles. J Control Release. 2008;128:41–9.

    Article  PubMed  Google Scholar 

  17. Loebenberg R, Finlay WH, Roa WH, Ely L. Effervescent powders for inhalation. US 2007/0031490 A1. 2007.

  18. Ely L, Roa W, Finlay WH, Löbenberg R. Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm. 2007;65:346–53.

    Article  PubMed  CAS  Google Scholar 

  19. Azarmi S, Löbenberg R, Roa WH, Tai S, Finlay WH. Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev Ind Pharm. 2008;34:943–7.

    Article  PubMed  CAS  Google Scholar 

  20. Finlay W, Orszanska H. Respirable dried powder formulation comprising drug loaded nanoparticles. WO 2006/130943 A1. 2006.

  21. Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Löbenberg R, et al. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm. 2006;319:155–61.

    Article  PubMed  CAS  Google Scholar 

  22. Finlay WH, Roa W, Loebenberg R. Formulation of powder containing nanoparticles for aerosol delivery to the lungs. US 2005/0019270 A1. 2005.

  23. Bailey MM, Gorman EM, Munson EJ, Berkland C. Pure insulin nanoparticle agglomerates for pulmonary delivery. Langmuir. 2008;24:13614–20.

    Article  PubMed  CAS  Google Scholar 

  24. El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98:2731–46.

    Article  PubMed  CAS  Google Scholar 

  25. Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369:136–43.

    Article  PubMed  CAS  Google Scholar 

  26. El-Gendy N, Berkland C. Combination chemotherapeutic dry powder aerosols via controlled nanoparticle agglomeration. Pharm Res. 2009;26:1752–63.

    Article  PubMed  CAS  Google Scholar 

  27. El-Gendy N, Berkland C. Combination nanoparticle agglomerates of fluticasone propionate and albuterol sulphate. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2010. River Grove: Davis Healthcare International; 2010. p. 819–24.

    Google Scholar 

  28. Iskandar F, Lenggoro W, Xia B, Okuyama K. Functional nanostructured silica powders derived from colloidal suspensions by sol spraying. J Nanopart Res. 2001;3:263–70.

    Article  CAS  Google Scholar 

  29. Chiou H, Chan H-K, Heng D, Prud’homme RK, Raper JA. A novel production method for inhalable cyclosporine A powders by confined liquid impinging jet precipitation. J Aerosol Sci. 2008;39:500–9.

    Article  CAS  Google Scholar 

  30. Chiou H, Li L, Hu T, Chan H-K, Chen J-F, Yun J. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation. Int J Pharm. 2007;331:93–8.

    Article  PubMed  CAS  Google Scholar 

  31. Glover WJ, Wan E, Yun JS, Chen J. A process for making micro-sized protein particles. WO 2009/020434 A1. 2009.

  32. Berkland CJ, Shi L. Nanoclusters for delivery of therapeutics. US 7651770 B2. 2010.

  33. Chen J-F, Zhou M-Y, Shao L, Wang Y-Y, Yun J, Chew NYK, et al. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int J Pharm. 2004;269:267–74.

    Article  PubMed  CAS  Google Scholar 

  34. Hu T, Chiou H, Chan H-K, Chen J-F, Yun J. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation. J Pharm Sci. 2008;97:944–9.

    Article  PubMed  CAS  Google Scholar 

  35. Instruction Manual ULTRA plus Field Emission Scanning Electron Microscope, Carl Zeiss NTS GmBH, Oberkochen, Germany, 2008.

  36. Kumon M, Kwok PCL, Adi H, Heng D, Chan H-K. Can low-dose combination products for inhalation be formulated in single crystalline particles? Eur J Pharm Sci. 2010;40:16–24.

    Article  PubMed  CAS  Google Scholar 

  37. British Pharmacopoeia Appendix XII C, Spottiswoode, London, 2010.

  38. Clark AR, Hollingworth AM. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers—Implications for in vitro testing. J Aerosol Med. 1993;6:99–110.

    Article  PubMed  CAS  Google Scholar 

  39. Molimard M, Till D, Stenglein S, Singh D, Krummen M. Inhalation devices for long-acting β2-agonists: Efficiency and ease of use of dry powder formoterol inhalers for use by patients with asthma and COPD. Curr Med Res Opin. 2007;23:2405–13.

    Article  PubMed  CAS  Google Scholar 

  40. Srichana T, Martin GP, Marriott C. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur J Pharm Sci. 1998;7:73–80.

    Article  PubMed  CAS  Google Scholar 

  41. Weiler C, Egen M, Trunk M, Langguth P. Force control and powder dispersibility of spray dried particles for inhalation. J Pharm Sci. 2010;99:303–16.

    Article  PubMed  CAS  Google Scholar 

  42. Heng D, Tang P, Cairney JM, Chan H-K, Cutler DJ, Salama R, et al. Focused-ion-beam milling: a novel approach to probing the interior of particles used for inhalation aerosols. Pharm Res. 2007;24:1608–17.

    Article  PubMed  CAS  Google Scholar 

  43. Adi H, Young PM, Chan H-K, Agus H, Traini D. Co-spray-dried mannitol-ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur J Pharm Sci. 2010;40:239–47.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the Australian Research Council (Discovery Project 0985367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, P.C.L., Tunsirikongkon, A., Glover, W. et al. Formation of Protein Nano-Matrix Particles with Controlled Surface Architecture for Respiratory Drug Delivery. Pharm Res 28, 788–796 (2011). https://doi.org/10.1007/s11095-010-0332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0332-2

KEY WORDS

Navigation