Skip to main content
Log in

Temozolomide-Based Dry Powder Formulations for Lung Tumor-Related Inhalation Treatment

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated.

Methods

The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively.

Results

The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations.

Conclusions

Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLPC:

1,2-dilauroyl-sn-glycero-3-phosphocholine

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DPI:

dry powder inhaler

DPPC:

dipalmitoyl phosphatidylcholine

DSC:

differential scanning calorimetry

FPD:

fine particle dose

FPF:

fine particle fraction

HPH:

high-pressure homogenizing

HPLC:

high-performance liquid chromatography

HPMC:

hypromellose

IV:

intravenous

MMAD:

mass median aerodynamic diameter

MsLI:

multi-stage liquid impinger

MTIC:

5-(3-methyltriazen-1-yl)imidazole-4-carboxamide

NGI:

next generation impactor

NSCLC:

non-small cell lung cancer

P90H:

phospholipon 90H

SCLC:

small cell lung cancer

SEM:

scanning electron microscopy

SLF:

simulated lung fluid

TGA:

thermogravimetric analysis

TMZ:

temozolomide

XRPD:

X-ray powder diffraction

REFERENCES

  1. Jemal A, Thun MJ, Ries LAG, Howe HL, Weir HK, Center MM, et al. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst. 2008;100:1672–94.

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed  Google Scholar 

  3. Erhunmwunsee L, D’Amico T. Surgical management of pulmonary metastases. Ann Thorac Surg. 2009;88:2052–60.

    Article  PubMed  Google Scholar 

  4. Yano T, Shoji F, Maehara Y. Current status of pulmonary metastasectomy from primary epithelial tumours. Surg Today. 2009;39:91–7.

    Article  PubMed  Google Scholar 

  5. Smyth HDC, Saleem I, Donovan M, Verschraegen CF. Pulmonary delivery of anti-cancer agents. In: Williams RO, Taft DR, McConville JT, editors. Advanced drug formulation design to optimize therapeutic outcomes. New-York: Informa Healthcare; 2008. p. 81–111.

    Google Scholar 

  6. Sharma S, White D, Imondi AR, Placke ME, Vail DM, Kris MG. Development of inhalational agents for oncologic use. Am J Clin Oncol. 2001;19:1839–47.

    CAS  Google Scholar 

  7. Jain KK. Drug delivery systems—an overview. Methods Mol Biol. 2008;437:1–50.

    Article  PubMed  CAS  Google Scholar 

  8. Shevchenko IT, Resnik GE. Inhalation of chemical substances and oxygen in radiotherapy of bronchial cancer. Neoplasia. 1968;15:419–26.

    CAS  Google Scholar 

  9. Limper AH. Chemotherapy-induced lung disease. Clin Chest Med. 2004;25:53–64.

    Article  PubMed  Google Scholar 

  10. Gagnadoux F, Hureaux J, Vecellio L, Urban T, Le Pape A, Valo I, et al. Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv. 2008;21:61–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wittgen BPH, Kunst PWA, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, et al. Phase I study of aerosolized SLIT cisplatine in the treatment of patients with carcinoma of the lung. Clin Cancer Res. 2007;13:2414–21.

    Article  PubMed  CAS  Google Scholar 

  12. Otterson GA, Villalona-Calero MA, Sharma S, Kris MG, Imondi A, Gerber M, et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res. 2007;13:1246–52.

    Article  PubMed  CAS  Google Scholar 

  13. Verschraegen CF, Gilbert BE, Loyer E, Huaringa A, Walsh G, Newman RA, et al. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-Camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res. 2004;10:2319–26.

    Article  PubMed  CAS  Google Scholar 

  14. O’Callaghan C, Barry PW. The science of nebulised drug delivery. Thorax. 1997;52:S31–44.

    Article  PubMed  Google Scholar 

  15. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392:1–19.

    Article  PubMed  CAS  Google Scholar 

  16. Kleinstreuer C, Zhang Z. Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors. J Biomech Eng. 2003;125:197–206.

    Article  PubMed  CAS  Google Scholar 

  17. Cancellieri A, Dalpiaz G, Maffessanti M, Pesci A, Polverosi R, Zompatori M. Diffuse Lung Diseases, clinical features, pathology, HRCT. New York: Springer; 2006.

    Google Scholar 

  18. Lefranc F, Facchini V, Kiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist. 2007;12:1395–403.

    Article  PubMed  CAS  Google Scholar 

  19. Trinh VA, Pastel SP, Hwu WJ. The safety of temozolomide in the treatment of malignancies. Expert Opin Drug Saf. 2009;8:493–9.

    Article  PubMed  CAS  Google Scholar 

  20. Maldonado F, Limper AH, Kaiser KL, Aubry M-C. Temozolomide-associated organizing pneumonitis. Mayo Clin Proc. 2007;82:771–3.

    Article  PubMed  Google Scholar 

  21. Adonizio CS, Babb JS, Maiale C, Huang C, Donahue J, Millenson MM, et al. Temozolomide in non-small-cell lung cancer: preliminary results of a phase II trial in previously treated patients. Clin Lung Cancer. 2002;3:254–8.

    Article  PubMed  CAS  Google Scholar 

  22. Choong NW, Mauer AM, Hoffman PC, Rudin CM, Winegarden JD, Villano JL, et al. Phase II trial of temozolomide and irinotecan as second line treatment for advanced non-small cell lung cancer. J Thorac Oncol. 2006;1:732–3.

    Article  Google Scholar 

  23. Kouroussis C, Vamvakas L, Vardakis N, Ktsakis A, Kalbakis K, Saridakis Z, et al. Continuous administration of daily low-dose temozolomide in pretreated patients with advanced non-small cell lung cancer: a phase II study. Oncology. 2009;76:112–7.

    Article  PubMed  CAS  Google Scholar 

  24. Lamoral-Theys D, Pottier L, Kerff F, Dufrasne F, Proutière F, Wauthoz N, et al. Simple di- and trivanillates exibit cytostatic properties towards cancer cells resistant to pro-apoptotic stimuli. Bioorg Med Chem. 2010;18:3823–33.

    Article  PubMed  CAS  Google Scholar 

  25. Wauthoz N, Deleuze P, Hecq J, Roland I, Saussez S, Adanja I, et al. In vivo assessment of témozolomide local delivery for lung cancer inhalation therapy. Eur J Pharm Sci. 2010;29:402–11.

    Article  Google Scholar 

  26. Mathieu V, Le Mercier M, De Neve N, Sauvage S, Gras T, Roland I, et al. Galectin-1 knockdown increases sensitivity of temozlomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol. 2007;127:2399–410.

    Article  PubMed  CAS  Google Scholar 

  27. Sdraulig S, Franich R, Tinker RA, Solomon S, O’Brien R, Johnston PN. In vitro dissolution studies of uranium bearing material in simulated lung fluid. J Environ Radioact. 2008;99:527–38.

    Article  PubMed  CAS  Google Scholar 

  28. Shah VP, Tsong Y, Sathe P, Liu J-P. In vitro dissolution profile comparison-statistics and analysis of the similarity factor f2. Pharm Res. 1998;15:889–96.

    Article  PubMed  CAS  Google Scholar 

  29. Stupp R, Warren PM, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastomas. N Engl J Med. 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  30. Hecq J, Deleers M, Fanara D, Vrancks H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299:167–77.

    Article  PubMed  CAS  Google Scholar 

  31. Pilcer G, Vanderbist F, Amighi K. Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. Int J Pharm. 2009;365:162–9.

    Article  PubMed  CAS  Google Scholar 

  32. Miao S, Ross YH. Crystallization kinetics and X-ray diffraction of crystals formed in amorphous lactose, threhalose, and lactose/trehalose mixtures. J Food Sci. 2005;70:350–8.

    Article  Google Scholar 

  33. Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23:931–40.

    Article  PubMed  CAS  Google Scholar 

  34. Sebti T. Developpement et evaluation de formulations lipidiques à poudre sèche pour inhalation, Thèse (ULB, Pharmacie). Bruxelles: Université Libre de Bruxelles; 2006.

    Google Scholar 

  35. Drapier-Beche N, Fanni J, Parmentier M, Vilasi M. Evaluation of lactose crystalline forms by nondestructive analysis. J Dairy Sci. 1997;80:457–63.

    Article  CAS  Google Scholar 

  36. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.

    Article  PubMed  CAS  Google Scholar 

  37. Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255:175–87.

    Article  PubMed  CAS  Google Scholar 

  38. Henning A, Schneider M, Nafee N, Muijs L, Rytting E, Wang X, et al. Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv. 2010;23:233–41.

    Article  PubMed  CAS  Google Scholar 

  39. Yang W, Tam J, Miller DA, Zhou J, McConville JT, Johnston KP, et al. High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm. 2008;361:177–88.

    Article  PubMed  CAS  Google Scholar 

  40. Sampson JH, Archer GE, Villavicencio AT, McLendon RE, Friedman AH, Bishop WR, et al. Treatment of neoplastic meningitis with intrathecal temozolomide. Clin Cancer Res. 1999;5:1183–8.

    PubMed  CAS  Google Scholar 

  41. Salama RO, Daniela T, Chan HK, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70:145–52.

    Article  PubMed  CAS  Google Scholar 

  42. Son Y-J, McConville JT. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm. 2009;382:15–22.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Industrial Chemistry Department of ULB for the X-Ray Powder Diffraction. Robert Kiss is a Director of Research with the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Wauthoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wauthoz, N., Deleuze, P., Saumet, A. et al. Temozolomide-Based Dry Powder Formulations for Lung Tumor-Related Inhalation Treatment. Pharm Res 28, 762–775 (2011). https://doi.org/10.1007/s11095-010-0329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0329-x

KEY WORDS

Navigation