Skip to main content
Log in

Multivariate Data Analysis of Factors Affecting the In Vitro Dissolution Rate and the Apparent Solubility for a Model Basic Drug Substance in Aqueous Media

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the usefulness of a miniaturized rotating disk equipment for the determination of factors influencing the in vitro dissolution rate, G, of a model basic drug substance (terfenadine) in different aqueous media, using experimental design and multivariate data analysis. The apparent solubility, S, was included in the chemometric study.

Methods

The dissolution rate was determined with a miniaturized rotating disk apparatus and the solubility by shake-flask methodology. Media were based on acetate, phosphate or maleate buffers—the latter used in fasted state simulated intestinal fluid (FaSSIF-V2). The chemometric analyses included fractional factorial design, principal component analysis (PCA) and orthogonal partial least squares (OPLS). Quantifications were made with a RP-HPLC-DAD system.

Results

The most influential factor for both G and S of terfenadine in the different media was pH. Apart from the ionic strength and sodium chloride concentration in the acetate medium, the effects of the other variables were insignificant, implying no wetting effect of the surfactants.

Conclusions

The miniaturized rotating disk equipment was suitable to use, in conjunction with the chemometric analyses, in the evaluation of the factors affecting the in vitro dissolution rate. The apparent solubility was found to be influenced by the same factors as G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACN:

acetonitrile

BCS:

biopharmaceutical classification system

CMC:

critical micelle concentration

DAD:

diode array detector

DoE:

design of experiments

G:

in vitro dissolution rate

GI:

gastrointestinal

I:

ionic strength

IVIVC:

in vitro/in vivo correlation

NaCl:

sodium chloride

NaTC:

sodium taurocholate

OPLS:

orthogonal partial least squares

PCA:

principal component analysis

RP-HPLC:

reversed phase high-performance liquid chromatography

RSD:

relative standard deviation

S:

apparent solubility

TFA:

trifluoroacetic acid

REFERENCES

  1. Dressman JB, Vertzoni M, Goumas K, Reppas C. Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev. 2007;59:591–602.

    Article  CAS  PubMed  Google Scholar 

  2. Vertzoni M, Pastelli E, Psachoulias D, Kalantzi L, Reppas C. Estimation of intragastric solubility of drugs: in what medium? Pharm Res. 2007;24:909–17.

    Article  CAS  PubMed  Google Scholar 

  3. The United States Pharmacopeia. USP 29. Rockville: United States Pharmacopeial Convention Inc.; 2006.

    Google Scholar 

  4. Ravi V, Siddaramaiah, Kumar TMP. Influence of natural polymer coating on novel colon targeting drug delivery system. J Mater Sci: Mater Med. 2008;19:2131–6.

    Article  CAS  Google Scholar 

  5. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet. 2007;22:225–54.

    Article  CAS  PubMed  Google Scholar 

  6. Müllertz A. Biorelevant dissolution media. Biotechnology; Pharmaceutical Aspects (Publisher: AAPS Press) 2007;151–77.

  7. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23:165–76.

    Article  CAS  PubMed  Google Scholar 

  8. Moreno MPd1C, Oth M, Deferme S, FLammert, Tack J, Dressman J et al. Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol. 2006;58:1079–89.

    Article  CAS  Google Scholar 

  9. Persson EM, Gustafsson A-S, Carlsson AS, Nilsson RG, Knutson L, Forsell P et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res. 2005;22:2141–51.

    Article  CAS  PubMed  Google Scholar 

  10. Kostewicz ES, Brauns U, Becker R, Dressman JB. Forecasting the oral absorption behaviour of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm Res. 2002;19:345–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl A, Ungell A-L, Knutson L, Lennernäs H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res. 1997;14:497–502.

    Article  CAS  PubMed  Google Scholar 

  12. Ibekwe VC, Fadda HM, Parsons GE, Basit AW. A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int J Pharm. 2006;308.

  13. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of Class I and II drugs. Pharm Res. 1998;15:698–705.

    Article  CAS  PubMed  Google Scholar 

  14. Sheng JJ, MacNamara DP, Amidon GL. Towards an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm. 2009;6:29–39.

    Article  CAS  PubMed  Google Scholar 

  15. Boni JE, Brickl RS, Dressman J. Is bicarbonate buffer suitable as a dissolution medium? J Pharm Pharmacol. 2007;59:1375–82.

    Article  CAS  PubMed  Google Scholar 

  16. Smidt JHd, Offringa JCA, Crommelin DJA. Dissolution kinetics of theofylline in aqueos polymer solutions. Int J Pharm. 1991;77:255–9.

    Article  Google Scholar 

  17. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25:1663–76.

    Article  CAS  PubMed  Google Scholar 

  18. Pedersen BL, Müllertz A, Brøndsted H, Kristensen HG. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm Res. 2000;17:891–4.

    Article  CAS  PubMed  Google Scholar 

  19. Lue B-M, Nielsen FS, Magnussen T, Schou HM, Kristensen K, Jacobsen LO et al. Using biorelevant dissolution to obtain IVIVC of solid dosage forms containing a poorly-soluble model compound. Eur J Pharm Biopharm. 2008;69:648–57.

    Article  CAS  PubMed  Google Scholar 

  20. Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm Res. 1999;16:1876–82.

    Article  CAS  PubMed  Google Scholar 

  21. Bard B, Martel S, Carrupt P-A. High troughput UV method for the estimation of thermodynamic solubility and the determination of the solubility in biorelevant media. Eur J Pharm Sci. 2008;33:230–40.

    Article  CAS  PubMed  Google Scholar 

  22. Zoellerand T, Klein S. Simplified biorelevant media for screening dissolution performance of poorly soluble drugs. Dissolut Technol. 2007;8–13.

  23. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11:73–80.

    Article  Google Scholar 

  24. Fadda HM, Basit AW. Dissolution of pH responsive formulations in media resembling intestinal fluids: bicarbonate versus phosphate buffers. J Drug Deliv Sci Technol. 2005;15:273–9.

    CAS  Google Scholar 

  25. MacNamara DP, Whitney KM, Goss SL. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs. Pharm Res. 2003;20:1641–6.

    Article  Google Scholar 

  26. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13:163–7.

    Article  CAS  PubMed  Google Scholar 

  27. McNamara DP, Boehringer I. Dissolution of pharmaceuticals in simple and complex systems. Drugs and the pharmaceutical sciences. Transport Process Pharm Syst. 2000;102:109–46.

    CAS  Google Scholar 

  28. Efentakis M, Dressman JB. Gastric juice as a dissolution medium: surface tension and pH. Eur J Drug Metab Pharmacokinet. 1998;23:97–102.

    Article  CAS  PubMed  Google Scholar 

  29. Wei H, Löbenberg R. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur J Pharm Sci. 2006;29:45–52.

    Article  CAS  PubMed  Google Scholar 

  30. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanism for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86:269–82.

    Article  CAS  PubMed  Google Scholar 

  31. Bakatselou V, Oppenheim RC, Dressman JB. Solubilization nad wetting effects of bile salts on the dissolution of steroids. Pharm Res. 1991;8:1461–9.

    Article  CAS  PubMed  Google Scholar 

  32. Leng J, Egelhaaf SU, Cates ME. Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys J. 2003;85:1624–46.

    Article  CAS  PubMed  Google Scholar 

  33. Gabrielsson J, Lindberg N-O, Lundstedt T. Multivariate methods in pharmaceutical applications. J Chemometr. 2002;16:141–60.

    Article  CAS  Google Scholar 

  34. Parshad H, Frydenvang K, Liljefors T, Larsen CS. Correlation of aqueous solubility of salts of benzylamine with experimentally and theoretically derived parameters. A multivariate data analysis approach. Int J Pharm. 2002;237:193–207.

    Article  CAS  PubMed  Google Scholar 

  35. Grover M, Singh B, Bakshi M, Singh S. Quantitative structure-property relationships in pharmaceutical research – Part 1. Pharm Sci Technol Today. 2000;3:28–35.

    Article  CAS  PubMed  Google Scholar 

  36. Du-Cuny L, Huwyler J, Wiese M, Kansy M. Computional aqueous solubility prediction for drug-like compounds in congeneric series. Eur J Med Chem. 2008;43:501–12.

    Article  PubMed  CAS  Google Scholar 

  37. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of experiments, principles and application. Umeå: Umetrics Academy; 2000.

    Google Scholar 

  38. de Aguiar PF, Bourguignon B, Khots MS, Massart DL, Phan-Than-Luu R. D-optimal designs. Chemo Intell Lab Syst. 1995;30:199–210.

    Article  CAS  Google Scholar 

  39. Olsson I-M, Gottfries J, Wold S. D-optimal onion designs in statistical molecular design. Chemo Intell Lab Syst. 2004;73:37–46.

    Article  CAS  Google Scholar 

  40. Rosén J. ChemGPS-NP and the exploration of biologically relevant chemical space. U. Dissertation from the Faculty of Pharmacy (ed). Vol. 89, Acta Universitatis Upsaliensis Uppsala (2009).

  41. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J et al. Experimental design and optimization. Chemo Intell Lab Syst. 1998;42:3–40.

    Article  CAS  Google Scholar 

  42. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemo Intell Lab Syst. 1987;2:37–52.

    Article  CAS  Google Scholar 

  43. Pearson K. On lines and planes of closest fit to systems of points in space. Phil Mag. 1901;2:559–72.

    Google Scholar 

  44. Gottfries J, Johansson E, Trygg J. On the impact of uncorrelated variation in regression mathematics. J Chemometr. 2008;16:119–28.

    Google Scholar 

  45. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr. 2002;16:119–28.

    Article  CAS  Google Scholar 

  46. Jinno J, Oh D-M, Crison JR, Amidon GL. Dissolution of ionizabl water-insoluble drugs: the combined effect of pH and surfactant. J Pharm Sci. 2000;89:268–74.

    Article  CAS  PubMed  Google Scholar 

  47. Gottfries J, Ahlbom J, Harang V, Johansson E, Josefson M, Morsing T et al. Validation of an extended release tablet dissolution testing system using design and multivariate analysis. Int J Pharm. 1994;106:141–8.

    Article  CAS  Google Scholar 

  48. Redenti E, Pasini M, Ventura P, Spisni A, Vikmon M, Szejtli J. The terfenadine/β-cyclodextrin inclusion complex. J Inclusion Phenom Mol Recognit Chem. 1993;15:281–92.

    Article  CAS  Google Scholar 

  49. Snider DA, Addicks W, Owens W. Polymorphism in generic drug product development. Adv Drug Deliv Rev. 2004;56:391–5.

    Article  CAS  PubMed  Google Scholar 

  50. Choi H-G, Lee B-J, Han J-H, Lee M-K, Park K-M, Young CS et al. Terfenadine-β-cyklodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev Ind Pharm. 2001;27:857–62.

    Article  CAS  PubMed  Google Scholar 

  51. Skold C, Winiwarter S, Wernevik J, Bergstrom F, Engstrom L, Allen R et al. Presentation of a structurally diverse and commercially available drug data set for correlation and benchmarking studies. J Med Chem. 2006;49:6660–71.

    Article  PubMed  CAS  Google Scholar 

  52. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administred drugs. Pharm Res. 2009;26:2039–54.

    Article  CAS  PubMed  Google Scholar 

  53. Jain D, Pathak D, Pathak K. Pharmaceutical product development technologies based on the biopharmaceutical classification system. Pharmazie. 2009;64:483–90.

    CAS  PubMed  Google Scholar 

  54. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  55. Bergström CAS, Luthman K, Artursson P. Accuracy of calculated pH-dependent aqueous drug solubility. Eur J Pharm Sci. 2004;22:387–98.

    Article  PubMed  CAS  Google Scholar 

  56. Emami J. In vitro - in vivo correlation: from theory to applications. J Pharm Sci. 2006;9:31–51.

    Google Scholar 

  57. Sunesen VH, Pedersen BL, Kristensen HG, Müllertz A. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur J Pharm Sci. 2005;24:305–13.

    Article  CAS  PubMed  Google Scholar 

  58. Ahrabi SF, Madsen G, Dyrstad K, Sande SA, Graffner C. Development of pectin matrix tablets for colonic delivery of model drug ropivacaine. Eur J Pharm Sci. 2000;10:43–52.

    Article  CAS  PubMed  Google Scholar 

  59. Nicolaides E, Symillides M, Dressman JB, Reppas C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm Res. 2001;18:380–8.

    Article  CAS  PubMed  Google Scholar 

  60. Persson AM, Baumann K, Sundelof LO, Lindberg W, Sokolowski A, Pettersson C. Design and characterization of a new miniaturized rotating disk equipment for in vitro dissolution rate studies. J Pharm Sci. 2008;97:3344–55.

    Article  CAS  PubMed  Google Scholar 

  61. Persson AM, Sokolowski A, Pettersson C. Correlation of in vitro dissolution rate and apparent solubility in buffered media using a miniaturized rotating disk equipment: Part I. Comparison with a traditional USP rotating disk apparatus. Drug Discov Ther. 2009;3:104–13.

    CAS  Google Scholar 

  62. Persson AM, Pettersson C, Sokolowski A. Correlation of in vitro dissolution rate and apparent solubility in buffered media using a miniaturized rotating disk equipment: Part II: Comparing different buffer media. Drug Discov Ther. 2009;3:114–22.

    CAS  Google Scholar 

  63. Nelson KG, Shah AC. Convective diffusion model for a transport-controlled dissolution rate process. J Pharm Sci. 1975;64:610–4.

    Article  CAS  PubMed  Google Scholar 

  64. Nicklasson M, Brodin A, Nyqvist H. Studies on the relationship between solubility and intrinsic rate of dissolution as a function of pH. Acta Pharm Suecica. 1981;18:119–28.

    CAS  Google Scholar 

  65. Shah AC, Nelson KG. Evaluation of a convective diffusion drug dissolution rate model. J Pharm Sci. 1975;64:1518–20.

    Article  CAS  PubMed  Google Scholar 

  66. Hamlin WE, Northam JI, Wagner JG. Relationship between in vitro dissolution rates and solubilities of numerous compounds representative of various chemical species. J Pharm Sci. 1965;54:1651–3.

    Article  CAS  Google Scholar 

  67. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–4.

    Article  Google Scholar 

  68. Bruner L, Tolloczko S. On the velocity of solution of solid bodies. Z Phys Chem Stoechiomet Verwandts. 1900;35:283–90.

    Google Scholar 

  69. Brunner E. Reaction velocity in heterogenous systems. Z Phys Chem. 1904;47:56–102.

    Google Scholar 

  70. Nernst W. Theory of reaction velocity in heterogenous systems. Z Phys Chem. 1904;47:52–5.

    CAS  Google Scholar 

  71. Excel. Microsoft Office 2007, Microsoft Corporation, Europe.

  72. Sirius. Sirius Technical Applications Notes (STAN). In S. A. I. L. (UK) (ed), Vol. 1 (S. A. I. L. (UK), ed), 1994.

  73. Sirius. RefinementPro2 Sirius Analytical Instruments Ltd. (UK).

  74. Gäfvert E. Personal communication. Uppsala: Medical Product Agency; 2009.

    Google Scholar 

  75. Davies CW. Ion association. London: Butterworths; 1962.

    Google Scholar 

  76. Güntelberg E. Untersuchungen über Ioneninteraktion. Z Phys Chem. 1926;123:199–247.

    Google Scholar 

  77. MODDE 7 software, Umetrics AB, http://www.umetrics.com/, Umeå, Sweden.

  78. SIMCA-P+ 12.0 software, Umetrics AB, http://www.umetrics.com/, Umeå, Sweden.

  79. Sales Office. Personal communication, Prodotti Chimici e Alimentari S.p.A. a Socio Unico Sede Legale, Basaluzzo (AL), Italy, 2009.

  80. Bonferoni MC, Rossi S, Ferrari F, Stavik E, Pena-Romero A, Caramella C. Factorial analysis of the influence of dissolution medium on drug release from Carrageenan-Diltiazem complexes. AAPS PharmSciTec 1: Article 15; 2000.

  81. Park S-H, Choi H-K. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321:35–41.

    Article  CAS  PubMed  Google Scholar 

  82. Kettaneh-Wold N. Use of experimental design in the pharmaceutical industry. J Pharm Biomed Anal. 1991;9:605–10.

    Article  CAS  PubMed  Google Scholar 

  83. Serajuddin AT, Sheen PC, Augustine MA. Common ion effect on solubility and dissolution rate of the sodium salt of an organic acid. J Pharm Pharmacol. 1987;39:587–91.

    CAS  PubMed  Google Scholar 

  84. Li S, Doyle P, Metz S, Royce AE, Serajuddin AT. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J Pharm Sci. 2005;94:2224–31.

    Article  CAS  PubMed  Google Scholar 

  85. Van Slyke DD. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J Biol Chem. 1922;52:525–70.

    Google Scholar 

  86. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci. 1981;70:22–32.

    Article  CAS  PubMed  Google Scholar 

  87. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J Pharm Sci. 1981;70:13–22.

    Article  CAS  PubMed  Google Scholar 

  88. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25:3–14.

    Article  Google Scholar 

  89. Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95:1641–65.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank Walter Lindberg, AstraZeneca Mölndal, Sweden, for letting us borrow the miniaturized rotating disk equipment. Anders Sokolowski, AS Consulting Uppsala, Sweden, is thanked for all the exceptional help in the media and buffer calculations/recipes used in this study. Expressed gratitude is made to Eva M. Karlsson, Anders S. Carlsson and Anders AS. Karlsson, AstraZeneca Mölndal, Sweden, for the generous donation of the surfactants (NaTC and lecithin). Johan Gottfries, Gottfries Medicinal AB Göteborg, Sweden, is thanked for all constructive discussions of the multivariate data analysis. Financial support from the Carl Trygger Foundation, Sweden, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Maria Persson.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, A.M., Pettersson, C. & Rosén, J. Multivariate Data Analysis of Factors Affecting the In Vitro Dissolution Rate and the Apparent Solubility for a Model Basic Drug Substance in Aqueous Media. Pharm Res 27, 1309–1317 (2010). https://doi.org/10.1007/s11095-010-0111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0111-0

KEY WORDS

Navigation