Skip to main content

Advertisement

Log in

pH-Sensitive Multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A reversibly-PEGylated diblock copolymer, poly(aspartate-hydrazide-poly(ethylene glycol))-block-poly(aspartate-diaminoethane) (p[Asp(Hyd-PEG)]-b-p[Asp(DET)]) was reported here for enhanced gene transfection and colloidal stability. The diblock copolymer possessed a unique architecture based on a poly(aspartamide) backbone. The first block, p[Asp(Hyd)], was used for multi-PEG conjugations, and the second block, p[Asp(DET)], was used for DNA condensation and endosomal escape.

Methods

p[Asp(Hyd-PEG)]-b-p[Asp(DET)] was synthesized and characterized by 1H-NMR. Polyplexes were formed by mixing the synthesized polymers and pDNA. The polyplex size, ζ-potential, and in vitro transfection efficiency were determined by dynamic light scattering, ζ-potential measurements, and luciferase assays, respectively. pH-dependent release of PEG from the polymer was monitored by cationic-exchange chromatography.

Results

The polyplexes were 70–90 nm in size, and the surface charge was effectively shielded by a PEG layer. The transfection efficiency of the reversibly PEGylated polyplexes was confirmed to be comparable to that of the non-PEGylated counterparts and 1,000 times higher than that of the irreversibly PEGylated polyplexes. PEG release was demonstrated to be pH-sensitive. Fifty percent of the PEG was released within 30 min at pH 5, while the polymer incubated at pH 7.4 could still maintain 50% of PEG after 8 h.

Conclusion

The reversibly PEGylated polyplexes were shown to maintain polyplex stability without compromising transfection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Wiley. (2009) Gene Therapy Clinical Trials Worldwide. J Gene Med. http://www.wiley.co.uk/genetherapy/clinical/ (accessed 11/14/09).

  2. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8. doi:10.1038/43977.

    Article  CAS  PubMed  Google Scholar 

  3. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther. 13, 3–13 (2002) doi:10.1089/10430340152712629.

  4. Cavazzana-Calvo M, Lagresle C, Hacein-Bey-Abina S, Fischer A. Gene therapy for severe combined immunodeficiency. Annu Rev Med. 2005;56:585–602. doi:10.1146/annurev.med.56.090203.104142.

    Article  CAS  PubMed  Google Scholar 

  5. Another case of gene therapy-associated leukemia. Biotechnology Law Report 27, 11 (2008).

  6. Mastrobattista E, van der Aa MA, Hennink WE, Crommelin DJ. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov. 2006;5:115–21.

    Article  PubMed  Google Scholar 

  7. Meyer M, Wagner E. Recent developments in the application of plasmid DNA-based vectors and small interfering RNA therapeutics for cancer. Hum Gene Ther. 2006;17:1062–76. doi:10.1089/hum.2006.17.1062.

    Article  CAS  PubMed  Google Scholar 

  8. Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–58. doi:S0169409X02000467 [pii].

    Article  CAS  PubMed  Google Scholar 

  9. Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58:467–86. doi:S0169-409X(06)00050-0 [pii]10.1016/j.addr.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  10. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93. doi:nrd1775 [pii]10.1038/nrd1775.

    Article  CAS  PubMed  Google Scholar 

  11. Pathak A, Patnaik S, Gupta KC. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J. 2009;4:1559–72. doi:10.1002/biot.200900161.

    Article  CAS  PubMed  Google Scholar 

  12. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem. 1992;267:18759–65.

    CAS  PubMed  Google Scholar 

  13. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595–605. doi:10.1038/sj.gt.3300900.

    Article  CAS  PubMed  Google Scholar 

  14. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem. 2002;13:845–54. doi:bc025529v [pii].

    Article  CAS  PubMed  Google Scholar 

  15. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83:97–111.

    Article  CAS  PubMed  Google Scholar 

  16. Harada A, Cammas S, Kataoka K. Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules. 1996;29:6183–8.

    Article  CAS  Google Scholar 

  17. Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release. 2009;139:127–32. doi:S0168-3659(09)00418-0 [pii]10.1016/j.jconrel.2009.06.008.

    Article  CAS  PubMed  Google Scholar 

  18. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10:1349–58. doi:10.1089/10430349950018021.

    Article  PubMed  Google Scholar 

  19. Woodle MC. Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev. 1998;32:139–52. doi:S0169-409X(97)00136-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  20. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, et al. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther. 2004;11:418–25.

    Article  Google Scholar 

  21. Han M, Bae Y, Nishiyama N, Miyata K, Oba M, Kataoka K. Transfection study using multicellular tumor spheroids for screening non-viral polymeric gene vectors with low cytotoxicity and high transfection efficiencies. J Control Release. 2007;121:38–48. doi:S0168-3659(07)00238-6 [pii]10.1016/j.jconrel.2007.05.012.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong MP, Bae Y, Fukushima S, Forrest ML, Nishiyama N, Kataoka K, et al. pH-responsive Multi-PEGylated dual cationic nanoparticles enable charge modulations for safe gene delivery. ChemMedChem. 2007;2:1321–7. doi:10.1002/cmdc.200700093.

    Article  CAS  PubMed  Google Scholar 

  23. Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc. 2008;130:6001–9. doi:10.1021/ja800336v.

    Article  CAS  PubMed  Google Scholar 

  24. Choi JS, MacKay JA, Szoka Jr FC. Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: preparation and characterization. Bioconjug Chem. 2003;14:420–9. doi:10.1021/bc025625w.

    Article  CAS  PubMed  Google Scholar 

  25. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005;2:123–60.

    Article  CAS  PubMed  Google Scholar 

  26. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19:1488–94.

    Article  CAS  PubMed  Google Scholar 

  27. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69. doi:10.1042/BJ20031253BJ20031253 [pii].

    Article  CAS  PubMed  Google Scholar 

  28. Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci. 2007;64:356–64. doi:10.1007/s00018-007-6390-x.

    Article  CAS  PubMed  Google Scholar 

  29. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis Physiol Rev. 1997;77:759–803.

    CAS  Google Scholar 

  30. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–58. doi:S0169-409X(07)00096-8 [pii]10.1016/j.addr.2007.06.008.

    Article  CAS  PubMed  Google Scholar 

  31. Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release. 2007;117:256–66. doi:S0168-3659(06)00589-X [pii]10.1016/j.jconrel.2006.10.029.

    Article  CAS  PubMed  Google Scholar 

  32. Miyata K, Oba M, Nakanishi M, Fukushima S, Yamasaki Y, Koyama H, et al. Polyplexes from poly(aspartamide) bearing 1, 2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. J Am Chem Soc. 2008;130:16287–94. doi:10.1021/ja804561g.

    Article  CAS  PubMed  Google Scholar 

  33. Harada-Shiba M, Takamisawa I, Miyata K, Ishii T, Nishiyama N, Itaka K, et al. Intratracheal gene transfer of adrenomedullin using polyplex nanomicelles attenuates monocrotaline-induced pulmonary hypertension in rats. Mol Ther. 2009;17:1180–6. doi:mt200963 [pii]10.1038/mt.2009.63.

    Article  CAS  PubMed  Google Scholar 

  34. Darly WH, Poche D. The preparation of N-carboxyanhydrides of alphaaminoacids using bis(trichloromethyl)carbonate. Tetrahedron Lett. 1988;29:5859–62.

    Article  Google Scholar 

  35. Skoog B. Determination of polyethylene glycols 4000 and 6000 in plasma protein preparations. Vox sanguinis. 1979;37:345–9. doi:10.1111/j.1423-0410.1979.tb02314.x.

    Article  CAS  PubMed  Google Scholar 

  36. Pun SH, Davis ME. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug Chem. 2002;13:630–9. doi:bc0155768 [pii].

    Article  CAS  PubMed  Google Scholar 

  37. Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. 2008;130:3272–3. doi:10.1021/ja710344v.

    Article  CAS  PubMed  Google Scholar 

  38. Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum Gene Ther. 1996;7:2123–33. doi:10.1089/hum.1996.7.17-2123.

    Article  CAS  PubMed  Google Scholar 

  39. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18:301–13. doi:S0927-7765(99)00156-3 [pii].

    Article  CAS  Google Scholar 

  40. Miyata K, Fukushima S, Nishiyama N, Yamasaki Y, Kataoka K. PEG-based block catiomers possessing DNA anchoring and endosomal escaping functions to form polyplex micelles with improved stability and high transfection efficacy. J Control Release. 2007;122:252–60. doi:S0168-3659(07)00303-3 [pii]10.1016/j.jconrel.2007.06.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, T.C., Bae, Y., Yoshida, T. et al. pH-Sensitive Multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector. Pharm Res 27, 2260–2273 (2010). https://doi.org/10.1007/s11095-010-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0092-z

KEY WORDS

Navigation