Skip to main content

Advertisement

Log in

Human Scleral Diffusion of Anticancer Drugs from Solution and Nanoparticle Formulation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the transscleral permeability of chemotherapeutic drugs vinblastine and doxorubicin for treatment of intraocular tumors, and to compare the use of doxorubicin encapsulated in PLGA and liposome nanoparticles.

Methods

Human sclera was isolated and mounted in a Lucite chamber. Fluorescently tagged vinblastine (VIN), innately fluorescent free doxorubicin (DOX), PLGA doxorubicin (PLGA-DOX), or Doxil (Tibotec Therapeutics) were added to the episcleral donor chamber. The choroidal side was perfused with Balanced Salt Solution. Perfusate fractions were collected over 24 h and measured for fluorescence. Following the experiment, tissue sections were imaged, underwent a drug wash out procedure, and tissue drug content was analyzed using an LC–MS/MS method.

Results

Within 24 h, a total of 68%, 74%, 29%, and 1.9% of the drug dose from VIN, DOX, PLGA-DOX, and Doxil, respectively, diffused across the sclera. VIN and DOX scleral tissue showed strong fluorescence after 24 h. PLGA-DOX displayed scattered fluorescence, and Doxil indicated minimal fluorescence. LC–MS/MS revealed strong tissue binding of DOX.

Conclusions

This study suggests both vinblastine and doxorubicin are able to diffuse across human sclera. In addition, PLGA nanoparticles delivered doxorubicin at a slower rate across the sclera, and the liposome preparation resulted in the slowest delivery of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. L. Murphree, J. G. Villablanca, W. F. Deegan 3rd., J. K. Sato, M. Malogolowkin, A. Fisher, R. Parker, E. Reed, and C. J. Gomer. Chemotherapy plus local treatment in the management of intraocular retinoblastoma. Arch. Ophthalmol. 114:1348–1356 (1996).

    PubMed  CAS  Google Scholar 

  2. M. S. Benz, I. U. Scott, T. G. Murray, D. Kramer, and S. Toledano. Complications of systemic chemotherapy as treatment of retinoblastoma. Arch. Ophthalmol. 118:577–578 (2000).

    PubMed  CAS  Google Scholar 

  3. B. L. Gallie, A. Budning, G. DeBoer, J. J. Thiessen, G. Koren, Z. Verjee, V. Ling, and H. S. Chan. Chemotherapy with focal therapy can cure intraocular retinoblastoma without radiotherapy. Arch. Ophthalmol. 114:1321–1328 (1996).

    PubMed  CAS  Google Scholar 

  4. M. Chintagumpala, P. Chevez-Barrios, E. A. Paysse, S. E. Plon, and R. Hurwitz. Retinoblastoma: review of current management. Oncologist. 12:1237–1246 (2007). doi:10.1634/theoncologist.12-10-1237.

    Article  PubMed  Google Scholar 

  5. P. De Potter. Current treatment of retinoblastoma. Curr. Opin. Ophthalmol. 13:331–336 (2002). doi:10.1097/00055735-200210000-00007.

    Article  PubMed  Google Scholar 

  6. D. H. Abramson, C. M. Frank, and I. J. Dunkel. A phase I/II study of subconjunctival carboplatin for intraocular retinoblastoma. Ophthalmology. 106:1947–1950 (1999). doi:10.1016/S0161-6420(99)90406-2.

    Article  PubMed  CAS  Google Scholar 

  7. L. Lenazand, and J. A. Page. Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat. Rev. 3:111–120 (1976). doi:10.1016/S0305-7372(76)80018-7.

    Article  Google Scholar 

  8. K. R. Van Quill, P. K. Dioguardi, C. T. Tong, J. A. Gilbert, T. M. Aaberg Jr., H. E. Grossniklaus, H. F. Edelhauser, and J. M. O’Brien. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology. 112:1151–1158 (2005). doi:10.1016/j.ophtha.2004.11.060.

    Article  PubMed  Google Scholar 

  9. T. G. Murray, N. Cicciarelli, J. M. O’Brien, E. Hernandez, R. L. Mueller, B. J. Smith, and W. Feuer. Subconjunctival carboplatin therapy and cryotherapy in the treatment of transgenic murine retinoblastoma. Arch. Ophthalmol. 115:1286–1290 (1997).

    PubMed  CAS  Google Scholar 

  10. A. E. Simpson, J. A. Gilbert, D. E. Rudnick, D. H. Geroski, T. M. Aaberg Jr., and H. F. Edelhauser. Transscleral diffusion of carboplatin: an in vitro and in vivo study. Arch. Ophthalmol. 120:1069–1074 (2002).

    PubMed  CAS  Google Scholar 

  11. A. Makimoto. Results of treatment of retinoblastoma that has infiltrated the optic nerve, is recurrent, or has metastasized outside the eyeball. Int. J. Clin. Oncol. 9:7–12 (2004). doi:10.1007/s10147-003-0364-2.

    Article  PubMed  Google Scholar 

  12. F. Di Nicolantonio, M. Neale, Z. Onadim, J. L. Hungerford, J. L. Kingston, and I. A. Cree. The chemosensitivity profile of retinoblastoma. Recent Results Cancer Res. 161:73–80 (2003).

    PubMed  Google Scholar 

  13. Physicians’ Desk Reference, Vol. 55th ed, Medical Economics Company, Inc., Montvale, 2001, pp. 1986–2565.

  14. R. Dhamodharan, M. A. Jordan, D. Thrower, L. Wilson, and P. Wadsworth. Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol. Biol. Cell. 6:1215–1229 (1995).

    PubMed  CAS  Google Scholar 

  15. T. Hu, Q. Le, Z. Wu, and W. Wu. Determination of doxorubicin in rabbit ocular tissues and pharmacokinetics after intravitreal injection of a single dose of doxorubicin-loaded poly-beta-hydroxybutyrate microspheres. J. Pharm. Biomed. Anal. 43:263–269 (2007). doi:10.1016/j.jpba.2006.06.032.

    Article  PubMed  CAS  Google Scholar 

  16. T. W. Olsen, H. F. Edelhauser, J. I. Lim, and D. H. Geroski. Human scleral permeability: effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Investig. Ophthalmol. Vis. Sci. 36:1893–1903 (1995).

    CAS  Google Scholar 

  17. D. E. Rudnick, J. S. Noonan, D. H. Geroski, M. R. Prausnitz, and H. F. Edelhauser. The effect of intraocular pressure on human and rabbit scleral permeability. Invest. Ophthalmol. Vis. Sci. 40:3054–3058 (1999).

    PubMed  CAS  Google Scholar 

  18. J. A. Gilbert, A. E. Simpson, D. E. Rudnick, D. H. Geroski, T. M. Aaberg Jr., and H. F. Edelhauser. Transscleral permeability and intraocular concentrations of cisplatin from a collagen matrix. J. Control. Release. 89:409–417 (2003). doi:10.1016/S0168-3659(03)00151-2.

    Article  PubMed  CAS  Google Scholar 

  19. A. C. Amriteand, and U. B. Kompella. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol. 57:1555–1563 (2005). doi:10.1211/jpp.57.12.0005.

    Article  Google Scholar 

  20. A. C. Amrite, H. F. Edelhauser, S. R. Singh, and U. B. Kompella. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol. Vis. 14:150–160 (2008).

    PubMed  CAS  Google Scholar 

  21. J. Ambati, C. S. Canakis, J. W. Miller, E. S. Gragoudas, A. Edwards, D. J. Weissgold, I. Kim, F. C. Delori, and A. P. Adamis. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41:1181–1185 (2000).

    PubMed  CAS  Google Scholar 

  22. L. P. Cruysberg, R. M. Nuijts, D. H. Geroski, L. H. Koole, F. Hendrikse, and H. F. Edelhauser. In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J. Ocul. Pharmacol. Ther. 18:559–569 (2002). doi:10.1089/108076802321021108.

    Article  PubMed  CAS  Google Scholar 

  23. U. B. Kompella, N. Bandi, and S. P. Ayalasomayajula. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest. Ophthalmol. Vis. Sci. 44:1192–1201 (2003). doi:10.1167/iovs.02-0791.

    Article  PubMed  Google Scholar 

  24. S. P. Ayalasomayajulaand, and U. B. Kompella. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm. Res. 21:1797–1804 (2004). doi:10.1023/B:PHAM.0000045231.51924.e8.

    Article  Google Scholar 

  25. M. R. Robinson, S. S. Lee, H. Kim, S. Kim, R. J. Lutz, C. Galban, P. M. Bungay, P. Yuan, N. S. Wang, J. Kim, and K. G. Csaky. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 82:479–487 (2006). doi:10.1016/j.exer.2005.08.007.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by grants from Fight for Sight, Research to Prevent Blindness, and NEI Grants: P30 EY06360 and R24 EY017045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.S., Durairaj, C., Kadam, R.S. et al. Human Scleral Diffusion of Anticancer Drugs from Solution and Nanoparticle Formulation. Pharm Res 26, 1155–1161 (2009). https://doi.org/10.1007/s11095-009-9835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9835-0

KEY WORDS

Navigation