Skip to main content

Advertisement

Log in

Targeted Delivery of PSC-RANTES for HIV-1 Prevention using Biodegradable Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticles formulated from the biodegradable co-polymer poly(lactic-co-glycolic acid) (PLGA), were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting for PSC-RANTES anti-HIV-1 activity.

Materials and Methods

PSC-RANTES nanoparticles formulated via a double emulsion process and characterized in both in vitro and ex vivo systems to determine PSC-RANTES release rate, nanoparticle tissue permeation, and anti-HIV bioactivity.

Results

Spherical, monodisperse (PDI = 0.098 ± 0.054) PSC-RANTES nanoparticles (d = 256.58 ± 19.57 nm) with an encapsulation efficiency of 82.23 ± 8.35% were manufactured. In vitro release studies demonstrated a controlled release profile of PSC-RANTES (71.48 ± 5.25% release). PSC-RANTES nanoparticle maintained comparable anti-HIV activity with unformulated PSC-RANTES in a HeLa cell-based system with an IC50 of approximately 1pM. In an ex vivo cervical tissue model, PSC-RANTES nanoparticles displayed a fivefold increase in tissue uptake, enhanced tissue permeation, and significant localization at the basal layers of the epithelium over unformulated PSC-RANTES.

Conclusions

These results indicate that PSC-RANTES can readily be encapsulated into a PLGA nanoparticle drug delivery system, retain its anti-HIV-1 activity, and deliver PSC-RANTES to the target tissue. This is crucial for the success of this drug candidate as a topical microbicide product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. UNAIDS. AIDS Epidemic Update. (2007).

  2. R. Pool, G. Hart, G. Green, S. Harrison, S. Nyanzi, and J. Whitworth. Men’s attitudes to condoms and female controlled means of protection against HIV and STDs in south-western Uganda. Cult. Health Sex. 2:197–211 (2000). doi:10.1080/136910500300804.

    Article  PubMed  CAS  Google Scholar 

  3. M. M. Lederman, R. E. Offord, and O. Hartley. Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nat. Rev. Immunol. 6:371 (2006). doi:10.1038/nri1848.

    Article  PubMed  CAS  Google Scholar 

  4. J. Turpin. Considerations and development of topical microbicides to inhibit the sexual transmission of HIV. Expert. Opin. Investig. Drugs. 11:1007–1097 (2002). doi:10.1517/13543784.11.8.1077.

    Article  Google Scholar 

  5. P. Harrison, Z. Rosenberg, and J. Bowcut. Topical microbicides for disease prevention: status and challenges. Clin. Infect. Dis. 36:1290–1294 (2003). doi:10.1086/374834.

    Article  PubMed  Google Scholar 

  6. T. R. Moench, T. Chipato, and N. S. Padian. Preventing disease by protecting the cervix: the unexplored promise of internal vaginal barrier devices. AIDS. 15:1595–1602 (2001). doi:10.1097/00002030-200109070-00001.

    Article  PubMed  CAS  Google Scholar 

  7. T. Kawamura, S. S. Cohen, D. L. Borris, E. A. Aquilino, S. Glushakova, L. B. Margolis, J. M. Orenstein, R. E. Offord, A. R. Neurath, and A. Blauvelt. Candidate microbicides block HIV-1 infection of human immature langerhans cells within epithelial tissue explants. J. Exp. Med. 192:1491–1500 (2000). doi:10.1084/jem.192.10.1491.

    Article  PubMed  CAS  Google Scholar 

  8. T. Kawamura, S. E. Kurtz, A. Blauvelt, and S. Shimada. The role of Langerhans cells in the sexual transmission of HIV. J. Dermatol. Sci. 40:147 (2005). doi:10.1016/j.jdermsci.2005.08.009.

    Article  PubMed  CAS  Google Scholar 

  9. K. M. Fahrbach, S. M. Barry, S. Ayehunie, S. Lamore, M. Klausner, and T. J. Hope. Activated CD34-Derived langerhans cells mediate transinfection with human immunodeficiency virus. J. Virol. 81:6858–6868 (2007). doi:10.1128/JVI.02472-06.

    Article  PubMed  CAS  Google Scholar 

  10. F. Hladik, P. Sakchalathorn, L. Ballweber, G. Lentz, M. Fialkow, D. Eschenbach, and M. J. McElrath. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 26:257–270 (2007). doi:10.1016/j.immuni.2007.01.007.

    Article  PubMed  CAS  Google Scholar 

  11. M. K. Norvell, G. I. Benrubi, and R. J. Thompson. Investigation of microtrauma after sexual intercourse. J. Reprod. Med. 29:269–271 (1984).

    PubMed  CAS  Google Scholar 

  12. J. P. Moore, and M. Stevenson. New targets for inhibitors of HIV-1 replication. Nat. Rev. Mol. Cell Biol. 1:40 (2000). doi:10.1038/35036060.

    Article  PubMed  CAS  Google Scholar 

  13. H. Deng, R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, P. D. Marzio, S. Marmon, R. E. Sutton, C. M. Hill, C. B. Davis, S. C. Peiper, T. J. Schall, D. R. Littman, and N. R. Landau. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 381:661 (1996). doi:10.1038/381661a0.

    Article  PubMed  CAS  Google Scholar 

  14. C. J. Miller, and R. J. Shattock. Target cells in vaginal HIV transmission. Microbes Infect. 5:59 (2003). doi:10.1016/S1286-4579(02)00056-4.

    Article  PubMed  CAS  Google Scholar 

  15. T. N. C. Wells, A. E. I. Proudfoot, and C. A. Power. Chemokine receptors and their role in leukocyte activation. Immunol. Lett. 65:35 (1999). doi:10.1016/S0165-2478(98)00121-7.

    Article  PubMed  CAS  Google Scholar 

  16. G. Alkhatib, C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy, P. M. Murphy, and E. A. Berger. CC CKR5: A RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-Tropic HIV-1. Science. 272:1955–1958 (1996). doi:10.1126/science.272.5270.1955.

    Article  PubMed  CAS  Google Scholar 

  17. M. Mack, B. Luckow, P. J. Nelson, J. Cihak, G. Simmons, P. R. Clapham, N. Signoret, M. Marsh, M. Stangassinger, F. Borlat, T. N. C. Wells, D. Schlondorff, and A. E. I. Proudfoot. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187:1215–1224 (1998). doi:10.1084/jem.187.8.1215.

    Article  PubMed  CAS  Google Scholar 

  18. F. Cocchi, A. L. DeVico, A. Garzino-Demo, S. K. Arya, R. C. Gallo, and P. Lusso. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 270:1811–1815 (1995). doi:10.1126/science.270.5243.1811.

    Article  PubMed  CAS  Google Scholar 

  19. V. S. Torre, A. J. Marozsan, J. L. Albright, K. R. Collins, O. Hartley, R. E. Offord, M. E. Quinones-Mateu, and E. J. Arts. Variable sensitivity of CCR5-Tropic human immunodeficiency virus type 1 isolates to inhibition by RANTES analogs. J. Virol. 74:4868–4876 (2000). doi:10.1128/JVI.74.10.4868-4876.2000.

    Article  PubMed  CAS  Google Scholar 

  20. D. E. Mosier, G. R. Picchio, R. J. Gulizia, R. Sabbe, P. Poignard, L. Picard, R. E. Offord, D. A. Thompson, and J. Wilken. Highly potent RANTES analogues either prevent CCR5-Using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-Using variants. J. Virol. 73:3544–3550 (1999).

    PubMed  CAS  Google Scholar 

  21. G. Simmons, P. R. Clapham, L. Picard, R. E. Offord, M. M. Rosenkilde, T. W. Schwartz, R. Buser, T. N. Wells, and A. E. Proudfoot. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 276:276–279 (1997). doi:10.1126/science.276.5310.276.

    Article  PubMed  CAS  Google Scholar 

  22. A. E. I. Proudfoot, R. Buser, F. Borlat, S. Alouani, D. Soler, R. E. Offord, J.-M. Schroder, C. A. Power, and T. N. C. Wells. Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J. Biol. Chem. 274:32478–32485 (1999). doi:10.1074/jbc.274.45.32478.

    Article  PubMed  CAS  Google Scholar 

  23. A. Mueller, E. Kelly, and P. G. Strange. Pathways for internalization and recycling of the chemokine receptor CCR5. Blood. 99:785–791 (2002). doi:10.1182/blood.V99.3.785.

    Article  PubMed  CAS  Google Scholar 

  24. O. Hartley, H. Gaertner, J. Wilken, D. Thompson, R. Fish, A. Ramos, C. Pastore, B. Dufour, F. Cerini, A. Melotti, N. Heveker, L. Picard, M. Alizon, D. Mosier, S. Kent, and R. Offord. Medicinal chemistry applied to a synthetic protein: Development of highly potent HIV entry inhibitors. Proc. Natl. Acad. Sci. U.S.A. 101:16460–16465 (2004). doi:10.1073/pnas.0404802101.

    Article  PubMed  CAS  Google Scholar 

  25. M. Lederman, R. Veazey, R. Offord, D. Mosier, J. Dufour, M. Mefford, M. Piatak Jr., J. Lifson, J. Salkowitz, B. Rodriguez, A. Blauvelt, and O. Hartley. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science. 306:485–487 (2004). doi:10.1126/science.1099288.

    Article  PubMed  CAS  Google Scholar 

  26. P. Kuna, R. Alam, U. Ruta, and P. Gorski. RANTES induces nasal mucosal inflammation rich in eosinophils, basophils, and lymphocytes in vivo. Am. J. Respir. Crit. Care Med. 157:873–879 (1998).

    PubMed  CAS  Google Scholar 

  27. R. Cone, T. Hoen, X. Wong, R. Abusuwwa, D. Anderson, and T. Moench. Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission. BMC Infect. Dis. 6:90 (2006). doi:10.1186/1471-2334-6-90.

    Article  PubMed  Google Scholar 

  28. I. Bala, H. S, and K. MN. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carr. Syst. 21:387–422 (2004). doi:10.1615/CritRevTherDrugCarrierSyst.v21.i5.20.

    Article  CAS  Google Scholar 

  29. S.-S. Feng. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices. 1:115–125 (2004). doi:10.1586/17434440.1.1.115.

    Article  PubMed  CAS  Google Scholar 

  30. X. Gao, W. Tao, W. Lu, Q. Zhang, Y. Zhang, X. Jiang, and S. Fu. Lectin-conjugated PEG-PLA nanoparticles: Preparation and brain delivery after intranasal administration. Biomaterials. 27:3482 (2006). doi:10.1016/j.biomaterials.2006.01.038.

    Article  PubMed  CAS  Google Scholar 

  31. I. J. Castellanos, G. Flores, and K. Griebenow. Effect of the molecular weight of poly(ethylene glycol) used as emulsifier on alpha-chymotrypsin stability upon encapsulation in PLGA microspheres. J. Pharm. Pharmacol. 57:1261 (2005). doi:10.1211/jpp.57.10.0004.

    Article  PubMed  CAS  Google Scholar 

  32. J. M. Anderson, and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5 (1997). doi:10.1016/S0169-409X(97)00048-3.

    Article  PubMed  CAS  Google Scholar 

  33. A. Lamprecht, N. Ubrich, M. Hombreiro Perez, C. M. Lehr, M. Hoffman, and P. Maincent. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int. J. Pharm. 184:97 (1999). doi:10.1016/S0378-5173(99)00107-6.

    Article  PubMed  CAS  Google Scholar 

  34. J. E. Oh, Y. S. Nam, K. H. Lee, and T. G. Park. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres. J. Control. Release. 57:269–280 (1999). doi:10.1016/S0168-3659(98)00123-0.

    Article  PubMed  CAS  Google Scholar 

  35. J. Panyam, S. K. Sahoo, S. Prabha, T. Bargar, and V. Labhasetwar. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(-lactide-co-glycolide) nanoparticles. Int. J. Pharm. 262:1 (2003). doi:10.1016/S0378-5173(03)00295-3.

    Article  PubMed  CAS  Google Scholar 

  36. T. G. Park. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 16:1123 (1995). doi:10.1016/0142-9612(95)93575-X.

    Article  PubMed  CAS  Google Scholar 

  37. M. Penco, S. Marcioni, P. Ferruti, S. D’Antone, and R. Deghenghi. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials. 17:1583 (1996). doi:10.1016/0142-9612(95)00323-1.

    Article  PubMed  CAS  Google Scholar 

  38. D. K. Pettit, J. R. Lawter, W. J. Huang, S. C. Pankey, N. S. Nightlinger, D. H. Lynch, J. A. C. L. Schuh, P. J. Morrissey, and W. R. Gombotz. Characterization of Poly(glycolide-co-D,L-lactide)/Poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res. 14:1422–1430 (1997). doi:10.1023/A:1012176823155.

    Article  PubMed  CAS  Google Scholar 

  39. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54:135 (2002). doi:10.1016/S0169-409X(01)00245-9.

    Article  PubMed  CAS  Google Scholar 

  40. T. Peng, S.-X. Cheng, and R.-X. Zhuo. Synthesis and characterization of poly-alpha, beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. J. Biomed. Mater. Res. Part A. 76A:163–173 (2006). doi:10.1002/jbm.a.30550.

    Article  CAS  Google Scholar 

  41. C. Coester, P. Nayyar, and J. Samuel. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62:306 (2006). doi:10.1016/j.ejpb.2005.09.009.

    Article  PubMed  CAS  Google Scholar 

  42. L. A. Dailey, N. Jekel, L. Fink, T. Gessler, T. Schmehl, M. Wittmar, T. Kissel, and W. Seeger. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl. Pharmacol. 215:100 (2006). doi:10.1016/j.taap.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  43. N. Dinauer, S. Balthasar, C. Weber, J. Kreuter, K. Langer, and H. von Briesen. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 26:5898 (2005). doi:10.1016/j.biomaterials.2005.02.038.

    Article  PubMed  CAS  Google Scholar 

  44. M. J. Heffernan, and N. Murthy. Polyketal nanoparticles: A new pH-Sensitive biodegradable drug delivery vehicle. Bioconjugate Chem. 16:1340–1342 (2005). doi:10.1021/bc050176w.

    Article  CAS  Google Scholar 

  45. C. Roney, P. Kulkarni, V. Arora, P. Antich, F. Bonte, A. Wu, N. N. Mallikarjuana, S. Manohar, H.-F. Liang, A. R. Kulkarni, H.-W. Sung, M. Sairam, and T. M. Aminabhavi. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release. 108:193 (2005). doi:10.1016/j.jconrel.2005.07.024.

    Article  PubMed  CAS  Google Scholar 

  46. U. Westedt, M. Kalinowski, M. Wittmar, T. Merdan, F. Unger, J. Fuchs, S. Schaller, U. Bakowsky, and T. Kissel. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Control. Release. 119:41 (2007). doi:10.1016/j.jconrel.2007.01.009.

    Article  PubMed  CAS  Google Scholar 

  47. U. Bilati, E. Allemann, and E. Doelker. Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm. Dev. Technol. 8:1–9 (2003). doi:10.1081/PDT-120017517.

    Article  PubMed  CAS  Google Scholar 

  48. M. Suonpaa, E. Markela, T. Stahlberg, and I. Hemmila. Europium-labelled streptavidin as a highly sensitive universal label: Indirect time-resolved immunofluorometry of FSH and TSH. J. Immunol. Methods. 149:247–253 (1992). doi:10.1016/0022-1759(92)90256-S.

    Article  PubMed  CAS  Google Scholar 

  49. X. Wei, J. M. Decker, H. Liu, Z. Zhang, R. B. Arani, J. M. Kilby, M. S. Saag, X. Wu, G. M. Shaw, and J. C. Kappes. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 46:1896–1905 (2002). doi:10.1128/AAC.46.6.1896-1905.2002.

    Article  PubMed  CAS  Google Scholar 

  50. J. E. Cummins, Jr., J. M. Villanueva, T. Evans-Strickfaden, S. M. Sesay, S. R. Abner, T. J. Bush, T. A. Green, J. L. Lennox, T. Wright, T. M. Folks, C. E. Hart, and C. S. Dezzutti. Detection of infectious human immunodeficiency virus type 1 in female genital secretions by a short-term culture method. J. Clin. Microbiol. 41:4081–4088 (2003). doi:10.1128/JCM.41.9.4081-4088.2003.

    Article  PubMed  Google Scholar 

  51. C. M. Finnegan, S. S. Rawat, A. Puri, J. M. Wang, F. W. Ruscetti, and R. Blumenthal. Ceramide, a target for antiretroviral therapy. Proc. Natl. Acad. Sci. U.S.A. 101:15452–15457 (2004). doi:10.1073/pnas.0402874101.

    Article  PubMed  CAS  Google Scholar 

  52. A. B. Sassi, K. D. McCullough, M. R. Cost, S. L. Hillier, and L. C. Rohan. Permeability of tritiated water through human cervical and vaginal tissue. J. Pharm. Sci. 93:2009–2016 (2004). doi:10.1002/jps.20107.

    Article  PubMed  CAS  Google Scholar 

  53. T. Kawamura, S. E. Bruce, A. Abraha, M. Sugaya, O. Hartley, R. E. Offord, E. J. Arts, P. A. Zimmerman, and A. Blauvelt. PSC-RANTES Blocks R5 human immunodeficiency virus infection of langerhans cells isolated from individuals with a variety of CCR5 diplotypes. J. Virol. 78:7602–7609 (2004). doi:10.1128/JVI.78.14.7602-7609.2004.

    Article  PubMed  CAS  Google Scholar 

  54. D. H. Owen, and D. F. Katz. A vaginal fluid simulant. Contraception. 59:91 (1999). doi:10.1016/S0010-7824(99)00010-4.

    Article  PubMed  CAS  Google Scholar 

  55. R. Bodmeier, K. H. Oh, and H. Chen. The effect of the addition of low molecular weight poly(DL-lactide) on drug release from biodegradable poly(DL-lactide) drug delivery systems. Int. J. Pharm. 51:1–8 (1989). doi:10.1016/0378-5173(89)90068-9.

    Article  CAS  Google Scholar 

  56. L. Mu, and S. S. Feng. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol(R)): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release. 86:33 (2003). doi:10.1016/S0168-3659(02)00320-6.

    Article  PubMed  CAS  Google Scholar 

  57. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res. 13:1838 (1996). doi:10.1023/A:1016085108889.

    Article  PubMed  CAS  Google Scholar 

  58. H. Gaertner, R. Offord, P. Botti, G. Kuenzi, and O. Hartley. Semisynthetic analogues of PSC-RANTES, a potent anti-HIV protein. Bioconjugate Chem. 19:480–489 (2008). doi:10.1021/bc7003044.

    Article  CAS  Google Scholar 

  59. L. Vangelista, M. Secchi, and P. Lusso. Rational design of novel HIV-1 entry inhibitors by RANTES engineering. Vaccine. 26:3008 (2008). doi:10.1016/j.vaccine.2007.12.023.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented was supported through grants from the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institute of Health (AI-51649, Principle Investigator: Michael Lederman, Case Western Reserve University), the Pendleton Charitable Trust Fund, and the Irene McLenahan Young Investigator Research Fellowship. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAID. We would like to thank the Department of Material Sciences and Engineering of the University of Pittsburgh for the provision of access to the electron microscopy instrumentation and for assistance with the execution of this part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Cencia Rohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, A.S., Cost, M.R., Sassi, A.B. et al. Targeted Delivery of PSC-RANTES for HIV-1 Prevention using Biodegradable Nanoparticles. Pharm Res 26, 502–511 (2009). https://doi.org/10.1007/s11095-008-9765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9765-2

KEY WORDS

Navigation