Skip to main content
Log in

Polymer Chemistry Influences Monocytic Uptake of Polyanhydride Nanospheres

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate that polyanhydride copolymer chemistry affects the uptake and intracellular compartmentalization of nanospheres by THP-1 human monocytic cells.

Methods

Polyanhydride nanospheres were prepared by an anti-solvent nanoprecipitation technique. Morphology and particle diameter were confirmed via scanning election microscopy and quasi-elastic light scattering, respectively. The effects of varying polymer chemistry on nanosphere and fluorescently labeled protein uptake by THP-1 cells were monitored by laser scanning confocal microscopy.

Results

Polyanhydride nanoparticles composed of poly(sebacic anhydride) (SA), and 20:80 and 50:50 copolymers of 1,6-bis-(p-carboxyphenoxy)hexane (CPH) anhydride and SA were fabricated with similar spherical morphology and particle diameter (200 to 800 nm). Exposure of the nanospheres to THP-1 monocytes showed that poly(SA) and 20:80 CPH:SA nanospheres were readily internalized whereas 50:50 CPH:SA nanospheres had limited uptake. The chemistries also differentially enhanced the uptake of a red fluorescent protein-labeled antigen.

Conclusions

Nanosphere and antigen uptake by monocytes can be directly correlated to the chemistry of the nanosphere. These results demonstrate the importance of choosing polyanhydride chemistries that facilitate enhanced interactions with antigen presenting cells that are necessary in the initiation of efficacious immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. I. Preis, and R. S. Langer. A single-step immunization by sustained antigen release. J. Immunol. Methods. 28(1–2):193–197 (1979) doi:10.1016/0022-1759(79)90341-7.

    Article  PubMed  CAS  Google Scholar 

  2. J. H. Wilson-Welder et al. Vaccine adjuvants: Current challenges and future approaches. J. Pharm. Sci. 2008.

  3. S. P. Schwendeman. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carr. Syst. 19:73–98 (2002) doi:10.1615/CritRevTherDrugCarrierSyst.v19.i1.20.

    Article  CAS  Google Scholar 

  4. A. Gopferich. Polymer bulk erosion. Macromolecules. 30:2598–2604 (1997) doi:10.1021/ma961627y.

    Article  Google Scholar 

  5. Y. Wang et al. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment. Biomaterials. 25(18):4279–4285 (2004) doi:10.1016/j.biomaterials.2003.10.075.

    Article  PubMed  CAS  Google Scholar 

  6. K. Fu et al. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17(1):100–106 (2000) doi:10.1023/A:1007582911958.

    Article  PubMed  CAS  Google Scholar 

  7. A. G. Ding, and S. P. Schwendeman. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm. Res. 25(9):2041–2052 (2008) doi:10.1007/s11095-008-9594-3.

    Article  PubMed  CAS  Google Scholar 

  8. A. S. Determan et al. Protein stability in the presence of polymer degradation products: consequences for controlled release formulations. Biomaterials. 27(17):3312–3320 (2006) doi:10.1016/j.biomaterials.2006.01.054.

    Article  PubMed  CAS  Google Scholar 

  9. A. S. Determan et al. Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres. J. Control. Release. 100(1):97–109 (2004) doi:10.1016/j.jconrel.2004.08.006.

    Article  PubMed  CAS  Google Scholar 

  10. G. Zhu, S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactic-co-glycolic acid). Nat. Biotechnol. 18:52–57 (2000) doi:10.1038/71916.

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Kipper et al. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials. 23(22):4405–4412 (2002) doi:10.1016/S0142-9612(02)00181-3.

    Article  PubMed  CAS  Google Scholar 

  12. E. Shen et al. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. J. Control. Release. 82(1):115–125 (2002) doi:10.1016/S0168-3659(02)00125-6.

    Article  PubMed  CAS  Google Scholar 

  13. E. Ron et al. Controlled release of polypeptides from polyanhydrides. Proc. Natl. Acad. Sci. USA. 90(9):4176–4180 (1993) doi:10.1073/pnas.90.9.4176.

    Article  PubMed  CAS  Google Scholar 

  14. L. Shieh et al. Erosion of a new family of biodegradable polyanhydrides. J. Biomed. Materi. Res. 28(12):1465–1475 (1994) doi:10.1002/jbm.820281212.

    Article  CAS  Google Scholar 

  15. J. P. Jain et al. Role of polyanhydrides as localized drug carriers. J. Control. Release. 103(3):541–563 (2005) doi:10.1016/j.jconrel.2004.12.021.

    Article  PubMed  CAS  Google Scholar 

  16. A. S. Determan et al. The role of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres. J. Microencapsul. 23(8):832–843 (2006) doi:10.1080/02652040601033841.

    Article  PubMed  CAS  Google Scholar 

  17. Y. Tabata, S. Gutta, and R. Langer. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10(4):487–496 (1993) doi:10.1023/A:1018929531410.

    Article  PubMed  CAS  Google Scholar 

  18. B. A. Pfeifer et al. Poly(ester-anhydride):poly(beta-amino ester) microspheres and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm. 304(1–2):210–219 (2005) doi:10.1016/j.ijpharm.2005.08.001.

    Article  PubMed  CAS  Google Scholar 

  19. N. B. Shelke, and T. M. Aminabhavi. Synthesis and characterization of novel poly(sebacic anhydride-co-Pluronic F68/F127) biopolymeric microspheres for the controlled release of nifedipine. Int. J. Pharm. 345(1–2):51–58 (2007) doi:10.1016/j.ijpharm.2007.05.036.

    Article  PubMed  CAS  Google Scholar 

  20. W. Hsu et al. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J. Neurooncol. 74(2):135–140 (2005) doi:10.1007/s11060-004-6597-8.

    Article  PubMed  CAS  Google Scholar 

  21. J. Hanes, M. Chiba, and R. Langer. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials. 19(1–3):163–172 (1998) doi:10.1016/S0142-9612(97)00221-4.

    Article  PubMed  CAS  Google Scholar 

  22. M. J. Kipper et al. Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. J. Biomed. Materi. Res. Part A. 76(4):798–810 (2006) doi:10.1002/jbm.a.30545.

    Article  Google Scholar 

  23. C. Berkland et al. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J. Control. Release. 94(1):129–141 (2004) doi:10.1016/j.jconrel.2003.09.011.

    Article  PubMed  CAS  Google Scholar 

  24. F. X. Lacasse et al. Influence of surface properties at biodegradable microsphere surfaces: effects on plasma protein adsorption and phagocytosis. Pharm. Res. 15(2):312–317 (1998) doi:10.1023/A:1011935222652.

    Article  PubMed  CAS  Google Scholar 

  25. J. A. Schwab, and M. Zenkel. Filtration of particulates in the human nose. Laryngoscope. 108(1):120–124 (1998) doi:10.1097/00005537-199801000-00023.

    Article  PubMed  CAS  Google Scholar 

  26. P. A. Jaques, and C. S. Kim. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12(8):715–731 (2000) doi:10.1080/08958370050085156.

    Article  PubMed  CAS  Google Scholar 

  27. M. P. Desai et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13(12):1838–1845 (1996) doi:10.1023/A:1016085108889.

    Article  PubMed  CAS  Google Scholar 

  28. T. Jung et al. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-gradt-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res. 18(3):352–360 (2001) doi:10.1023/A:1011063232257.

    Article  PubMed  CAS  Google Scholar 

  29. L. Illum. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm. Sci. 96(3):473–483 (2007) doi:10.1002/jps.20718.

    Article  PubMed  CAS  Google Scholar 

  30. M. P. Desai et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14(11):1568–1573 (1997) doi:10.1023/A:1012126301290.

    Article  PubMed  CAS  Google Scholar 

  31. J. E. Fuller et al. Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials. 29(10):1526–1532 (2008) doi:10.1016/j.biomaterials.2007.11.025.

    Article  PubMed  CAS  Google Scholar 

  32. A. Conix. Poly[1,3-bis(p-carboxyphenoxy)propane anhydride]. Macromolecular Synthesis. 2:95–98 (1966).

    CAS  Google Scholar 

  33. E. Mathiowitz et al. Biologically erodible microspheres as potential oral drug delivery systems. Nature. 386(6623):410–414 (1997) doi:10.1038/386410a0.

    Article  PubMed  CAS  Google Scholar 

  34. R. W. Stokes, and D. Doxsee. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell. Immunol. 197(1):1–9 (1999) doi:10.1006/cimm.1999.1554.

    Article  PubMed  CAS  Google Scholar 

  35. B. H. Bellaire, R. M. Roop II, and J. A. Cardelli. Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infecation and Immunity. 73(6):3702–3713 (2005) doi:10.1128/IAI.73.6.3702-3713.2005.

    Article  CAS  Google Scholar 

  36. ImageJ. Image Processing and Analysis in Java [cited 2008 August 3rd]; Available from: http://rsb.info.nih.gov/ij/.

  37. A. A. Itano et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity. 19(1):47–57 (2003) doi:10.1016/S1074-7613(03)00175-4.

    Article  PubMed  CAS  Google Scholar 

  38. E. Mathiowitz, et al. Process for preparing microparticles through phase inversion phenomena. 2003: United States of America.

  39. P. Lajoie, and I. R. Nabi. Regulation of raft-dependent endocytosis. J. Cell. Mol. Med. 11(4):644–653 (2007) doi:10.1111/j.1582-4934.2007.00083.x.

    Article  PubMed  CAS  Google Scholar 

  40. N. Gupta, and A. L. DeFranco. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell. 14(2):432–444 (2003) doi:10.1091/mbc.02-05-0078.

    Article  PubMed  CAS  Google Scholar 

  41. Z. Wolf et al. Monocyte cholesterol homeostasis correlates with the presence of detergent resistant membrane microdomains. Cytometry Part A. 71(7):486–494 (2007) doi:10.1002/cyto.a.20403.

    Article  Google Scholar 

  42. S. Y. Seong, and P. Matzinger. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4(6):469–478 (2004) doi:10.1038/nri1372.

    Article  PubMed  CAS  Google Scholar 

  43. M. G. Netea et al. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob. Agents Chemother. 49(10):3991–3996 (2005) doi:10.1128/AAC.49.10.3991-3996.2005.

    Article  PubMed  CAS  Google Scholar 

  44. P. Elamanchili et al. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother. 30(4):378–395 (2007) doi:10.1097/CJI.0b013e31802cf3e3.

    Article  PubMed  CAS  Google Scholar 

  45. A. L. Goldberg et al. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 39(3–4):147–164 (2002) doi:10.1016/S0161-5890(02)00098-6.

    Article  PubMed  CAS  Google Scholar 

  46. E. M. Hiltbold, and P. A. Roche. Trafficking of MHC class II molecules in the late secretory pathway. Curr. Opin. Immunol. 14(1):30–35 (2002) doi:10.1016/S0952-7915(01)00295-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

B.N. and M.J.W. acknowledge financial support from the US Department of Defense—Office of Naval Research (ONR Award no. N00014-06-1-1176) and the Grow Iowa Values Fund. B.H.B. acknowledges startup funds provided by Iowa State University-College of Veterinary Medicine and the Office of Biotechnology. B.D.U acknowledges financial support from the Aileen S. Andrew Foundation. The authors acknowledge useful discussions with Dr. Amanda Ramer-Tait and Jenny Wilson-Welder. B.N. dedicates this work to Nicholas A. Peppas on the wonderful occasion of his sixtieth birthday.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balaji Narasimhan or Bryan H. Bellaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulery, B.D., Phanse, Y., Sinha, A. et al. Polymer Chemistry Influences Monocytic Uptake of Polyanhydride Nanospheres. Pharm Res 26, 683–690 (2009). https://doi.org/10.1007/s11095-008-9760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9760-7

KEY WORDS

Navigation