Skip to main content
Log in

Towards More Realistic In Vitro Release Measurement Techniques for Biodegradable Microparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To better understand the importance of the environmental conditions for drug release from biodegradable microparticles allowing for the development of more appropriate in vitro release measurement techniques.

Methods

Propranolol HCl diffusion in various agarose gels was characterized by NMR and UV analysis. Fick’s law was used to theoretically predict the mass transport kinetics. Drug release from PLGA-based microparticles in such agarose gels was compared to that measured in agitated bulk fluids (“standard” method).

Results

NMR analysis revealed that the drug diffusivity was almost independent of the hydrogel concentration, despite of the significant differences in the systems’ mechanical properties. This is due to the small size of the drug molecules/ions with respect to the hydrogel mesh size. Interestingly, the theoretically predicted drug concentration-distance-profiles could be confirmed by independent experiments. Most important from a practical point of view, significant differences in the release rates from the same batch of PLGA-based microparticles into a well agitated bulk fluid versus a semi-solid agarose gel were observed.

Conclusion

Great care must be taken when defining the in vitro conditions for drug release measurements from biodegradable microparticles. The obtained new insight can help facilitating the development of more appropriate in vitro release testing procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. B. O’Donnell, and J.W. McGinity. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 28:25–42 (1997). doi:10.1016/S0169-409X(97)00049-5.

    Article  PubMed  CAS  Google Scholar 

  2. S. Freiberg, and X. X. Zhu. Polymer microspheres for controlled drug release. Int. J. Pharm. 282:1–18 (2004). doi:10.1016/j.ijpharm.2004.04.013.

    Article  PubMed  CAS  Google Scholar 

  3. G. E. Visscher, R. L. Robison, H. V. Maulding, J. W. Fong, J. E. Pearson, and G. J. Argentieri. Biodegradation of and tissue reaction to 50:50 poly(dl-lactide-co-glycolide) microcapsules. J. Biomed. Mater. Res. 19:349–365 (1985). doi:10.1002/jbm.820190315.

    Article  PubMed  CAS  Google Scholar 

  4. J. M. Anderson, and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997). doi:10.1016/S0169-409X(97)00048-3.

    Article  PubMed  CAS  Google Scholar 

  5. J. C. Middleton, and A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 21:2335–2346 (2000). doi:10.1016/S0142-9612(00)00101-0.

    Article  PubMed  CAS  Google Scholar 

  6. L. Wu, and J. Ding. In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 25:5821–5830 (2004). doi:10.1016/j.biomaterials.2004.01.038.

    Article  PubMed  CAS  Google Scholar 

  7. E. Fournier, C. Passirani, C. N. Montero-Menei, and J. P. Benoit. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials. 24:3311–3331 (2003). doi:10.1016/S0142-9612(03)00161-3.

    Article  PubMed  CAS  Google Scholar 

  8. P. Menei, E. Jadaud, N. Faisant, M. Boisdron-Celle, S. Michalak, D. Fournier, M. Delhaye, and J. P. Benoit. Stereotaxic implantation of 5-Fluorouracil-releasing microspheres in malignant glioma. Cancer. 100:405–410 (2004). doi:10.1002/cncr.11922.

    Article  PubMed  CAS  Google Scholar 

  9. D. J. Burgess, A. S. Hussain, T. S. Ingallinera, and M. L. Chen. Assuring quality and performance of sustained and controlled release parenterals: AAPS workshop report co-sponsored by FDA and USP. Pharm. Res. 19:1761–1768 (2002). doi:10.1023/A:1020730102176.

    Article  PubMed  CAS  Google Scholar 

  10. D. Burgess, D. Crommelin, A. Hussain, and M. Chen. Assuring quality and performance of sustained and controlled release parenterals. Eur. J. Pharm. Sci. 21:679–690 (2004). doi:10.1016/j.ejps.2004.03.001.

    Article  PubMed  CAS  Google Scholar 

  11. C. Nastruzzi, E. Esposito, R. Cortesi, R. Gambari, and E. Menegatti. Kinetics of bromocriptine release from microspheres: comparative analysis between different in vitro models. J. Microencapsul. 11:565–574 (1993). doi:10.3109/02652049409034995.

    Article  Google Scholar 

  12. B. Conti, I. Genta, P. Giunchedi, and T. Modena. Testing of “in vitro” dissolution behaviour of microparticulate drug delivery systems. Drug Dev. Ind. Pharm. 21:1223–1233 (1995). doi:10.3109/03639049509026671.

    Article  CAS  Google Scholar 

  13. D. F. Bain, D. L. Munday, and A. Smith. Modulation of rifampicin release from spray-dried microspheres using combinations of poly-(d,l-lactide). J. Microencapsul. 16:369–385 (1999). doi:10.1080/026520499289086.

    Article  PubMed  CAS  Google Scholar 

  14. A. Aubert-Pouëssel, D. C. Bibby, M. C. Venier-Julienne, F. Hindré, and J. P. Benoit. A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 19:1046–1051 (2002). doi:10.1023/A:1016482809810.

    Article  PubMed  Google Scholar 

  15. S. D’Souza, and P. P. DeLuca. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 6:323–328 (2005). doi:10.1208/pt060242.

    Article  Google Scholar 

  16. S. D’Souza, and P. P. DeLuca. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res. 23:460–474 (2006). doi:10.1007/s11095-005-9397-8.

    Article  PubMed  CAS  Google Scholar 

  17. J. Siepmann, and A. Goepferich. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48:229–247 (2001). doi:10.1016/S0169-409X(01)00116-8.

    Article  PubMed  CAS  Google Scholar 

  18. A. Brunner, K. Maeder, and A. Goepferich. PH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853 (1999). doi:10.1023/A:1018822002353.

    Article  PubMed  CAS  Google Scholar 

  19. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000). doi:10.1023/A:1007582911958.

    Article  PubMed  CAS  Google Scholar 

  20. L. Li, and S. P. Schwendeman. Mapping neutral microclimate pH in PLGA microspheres. J. Control. Release. 101:163–173 (2005). doi:10.1016/j.jconrel.2004.07.029.

    Article  PubMed  CAS  Google Scholar 

  21. F. v. Burkersroda, L. Schedl, and A. Goepferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 23:4221–4231 (2002). doi:10.1016/S0142-9612(02)00170-9.

    Article  Google Scholar 

  22. S. P. Schwendeman. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 19:73–98 (2002). doi:10.1615/CritRevTherDrugCarrierSyst.v19.i1.20.

    Article  PubMed  CAS  Google Scholar 

  23. J. Siepmann, K. Elkharraz, F. Siepmann, and D. Klose. How autocatalysis accelerates drug release from PLGA-based microparticles: A quantitative treatment. Biomacromolecules. 6:2312–2319 (2005). doi:10.1021/bm050228k.

    Article  PubMed  CAS  Google Scholar 

  24. D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 314:198–206 (2006). doi:10.1016/j.ijpharm.2005.07.031.

    Article  PubMed  CAS  Google Scholar 

  25. J. Siepmann, F. Siepmann, and A. T. Florence. Local controlled drug delivery to the brain: Mathematical modeling of the underlying mass transport mechanisms. Int. J. Pharm. 314:101–119 (2006). doi:10.1016/j.ijpharm.2005.07.027.

    Article  PubMed  CAS  Google Scholar 

  26. S. Allababidi, and J. C. Shah. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J. Pharm. Sci. 87:738–744 (1998). doi:10.1021/js9703986.

    Article  PubMed  CAS  Google Scholar 

  27. G. T. Gillies, T. D. Wilhelm, J. A. C. Humphrey, H. L. Fillmore, K. L. Holloway, and W. C. Broaddus. A spinal cord surrogate with nanoscale porosity for in vitro simulations of restorative neurosurgical techniques. Nanotechnology. 13:587–591 (2002). doi:10.1088/0957-4484/13/5/308.

    Article  Google Scholar 

  28. D. L. Holligan, G. T. Gillies, and J. P. Dailey. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 14:661–666 (2003). doi:10.1088/0957-4484/14/6/318.

    Article  CAS  Google Scholar 

  29. Z. Chen, G. Gillies, W. Broaddus, S. Prabhu, H. Fillmore, R. Mitchell, F. Corwin, and P. Fatouros. A realistic brain tissue phantom for intraparenchymal infusion studies. J. Neurosurg. 101:314–322 (2004).

    PubMed  Google Scholar 

  30. A. S. Hoffman. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54:3–12 (2002). doi:10.1016/S0169-409X(01)00239-3.

    Article  PubMed  CAS  Google Scholar 

  31. S. Arnott, A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse, and D. A. Rees. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90:269–272 (1974). doi:10.1016/0022-2836(74)90372-6.

    Article  PubMed  CAS  Google Scholar 

  32. M. Maaloum, N. Pernodet, and B. Tinland. Agarose gel structure using atomic force microscopy: Gel concentration and ionic strength effects. Electrophoresis. 19:1606–1610 (1998). doi:10.1002/elps.1150191015.

    Article  PubMed  CAS  Google Scholar 

  33. A. Pluen, P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 77:542–552 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, 1975.

    Google Scholar 

  35. H. Sjoeberg, S. Persson, and N. Caram-Lelham. How interactions between drugs and agarose-carrageenan hydrogels influence the simultaneous transport of drugs. J. Control. Release. 59:391–400 (1999). doi:10.1016/S0168-3659(99)00013-9.

    Article  Google Scholar 

  36. G. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert. In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials. 10:557–563 (1989). doi:10.1016/0142-9612(89)90063-X.

    Article  PubMed  CAS  Google Scholar 

  37. P. Menei, V. Daniel, C. Montero-Menei, M. Brouillard, A. Pouplard- Barthelaix, and J. P. Benoit. Biodegradation and brain tissue reaction to poly(d,l-lactide-co-glycolide) microspheres. Biomaterials. 14:470–478 (1993). doi:10.1016/0142-9612(93)90151-Q.

    Article  PubMed  CAS  Google Scholar 

  38. M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials. 20:1057–1062 (1999). doi:10.1016/S0142-9612(99)00002-2.

    Article  PubMed  CAS  Google Scholar 

  39. B. H. Woo, J. W. Kostanski, S. Gebrekidan, B. A. Dani, B. C. Thanoo, and P. P. DeLuca. Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres. J. Control. Release. 75:307–315 (2001). doi:10.1016/S0168-3659(01)004030-5.

    Article  PubMed  CAS  Google Scholar 

  40. M. Sandor, J. Harris, and E. Mathiowitz. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo. Biomaterials. 23:4413–4423 (2002). doi:10.1016/S0142-9612(02)00183-7.

    Article  PubMed  CAS  Google Scholar 

  41. L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer, and A. G. Mikos. In vitro and in vivo degradation of porous poly(-lactic-co-glycolic acid) foams. Biomaterials. 21:1837–1845 (2000). doi:10.1016/S0142-9612(00)00047-8.

    Article  PubMed  CAS  Google Scholar 

  42. R. A. Kenley, M. O. Lee, T. R. Mahoney, and L. M. Sanders. Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules. 20:2398–2403 (1987). doi:10.1021/ma00176a012.

    Article  CAS  Google Scholar 

  43. M. Baro, E. Sanchez, A. Delgado, A. Perera, and C. Evora. In vitro-in vivo characterization of gentamicin bone implants. J. Control. Release. 83:353–364 (2002). doi:10.1016/S0168-3659(02)00179-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of this work by the French Association for Cancer Research “ARC” (“Association pour la Recherche sur le Cancer”: postdoctoral fellowship for Dr. Florence Siepmann and doctoral fellowship for Mrs. Diana Klose). The NMR facilities were funded by the “Nord-Pas de Calais” Regional Council, the French Ministry and European Regional Development Fonds (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Siepmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, D., Azaroual, N., Siepmann, F. et al. Towards More Realistic In Vitro Release Measurement Techniques for Biodegradable Microparticles. Pharm Res 26, 691–699 (2009). https://doi.org/10.1007/s11095-008-9747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9747-4

KEY WORDS

Navigation