Skip to main content

Advertisement

Log in

Prediction of Vitreal Half-Life Based on Drug Physicochemical Properties: Quantitative Structure–Pharmacokinetic Relationships (QSPKR)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to develop quantitative structure pharmacokinetic relationships (QSPKR) to correlate drug physicochemical properties (molecular weight, lipophilicity, and drug solubility), dose, salt form factor, and eye pigmentation factor to intravitreal half-life in the rabbit model.

Methods

Dataset derived from prior literature reports, which included molecules with complete structural diversity, was used to develop the QSPKR models. Entire dataset as well as subsets limited to albino rabbit data, pigmented rabbit data, acids, bases, zwitterions, neutral compounds, suspensions, and macromolecules were analyzed. Multiple linear regression analysis was carried out with noncollinear independent variables and the best-fit models were selected based on correlation coefficients and goodness of fit statistics.

Results

The analysis indicated that logarithm of MW (Log MW), lipophilicity (Log P or Log D) and dose number (dose/solubility at pH 7.4), are the most critical determinants of intravitreal half-life of the compounds analyzed. The best-fit models obtained from the entire dataset (Log t 1/2 = −0.178 + 0.267 Log MW − 0.093 Log D + 0.003 dose/solubility at pH 7.4 + 0.153 Pigmentation Factor and Log t 1/2 = −0.32 + 0.432 Log MW − 0.157 Log P + 0.003 dose/solubility at pH 7.4) predicted the various subsets well. Pigmented dataset and zwitterions were better predicted by Log P rather than Log D.

Conclusions

The present study confirmed that intravitreal half-life could be better predicted by a group of variables (Log MW, Log P or Log D, dose number) rather than a single variable. In general, increasing Log MW and dose number, while reducing Log D or Log P would be beneficial for prolonging intravitreal half-life of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. M. Hughes, O. Olejnik, J. E. Chang-Lin, and C. G. Wilson. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev. 57:2010–2032 (2005). doi:10.1016/j.addr.2005.09.004.

    Article  PubMed  CAS  Google Scholar 

  2. D. H. Geroski, and H. F. Edelhauser. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci. 41:961–964 (2000).

    PubMed  CAS  Google Scholar 

  3. V. H. L. Lee, and K.-I. Hosoya. Retina. In C. P. Wilkinson (ed.), Drug Delivery to the Posterior Segment. Vol. 3, C.V. Mosby, Los Angeles, 2001.

    Google Scholar 

  4. M. D. de Smet, C. J. Meenken, and G. J. van den Horn. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7:189–198 (1999). doi:10.1076/ocii.7.3.189.4007.

    Article  PubMed  Google Scholar 

  5. R. M. Dafer, M. Schneck, T. R. Friberg, and W. M. Jay. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin. Ophtalmol. 22:201–204 (2007). doi:10.1080/08820530701543024.

    Article  Google Scholar 

  6. T. Ghafourian, M. Barzegar-Jalali, S. Dastmalchi, T. Khavari-Khorasani, N. Hakimiha, and A. Nokhodchi. QSPR models for the prediction of apparent volume of distribution. Int. J. Pharm. 319:82–97 (2006). doi:10.1016/j.ijpharm.2006.03.043.

    Article  PubMed  CAS  Google Scholar 

  7. T. Wajima, K. Fukumura, Y. Yano, and T. Oguma. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J. Pharm. Sci. 91:2489–2499 (2002). doi:10.1002/jps.10242.

    Article  PubMed  CAS  Google Scholar 

  8. A. Cheng, and K. M. Merz Jr. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure–property relationships. J. Med. Chem. 46:3572–3580 (2003). doi:10.1021/jm020266b.

    Article  PubMed  CAS  Google Scholar 

  9. M. P. Gleeson. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J. Med. Chem. 50:101–112 (2007). doi:10.1021/jm060981b.

    Article  PubMed  CAS  Google Scholar 

  10. R. D. Schoenwald, and H. S. Huang. Corneal penetration behavior of beta-blocking agents I: physiochemical factors. J. Pharm. Sci. 72:1266–1272 (1983). doi:10.1002/jps.2600721108.

    Article  PubMed  CAS  Google Scholar 

  11. F. Yoshida, and J. G. Topliss. Unified model for the corneal permeability of related and diverse compounds with respect to their physicochemical properties. J. Pharm. Sci. 85:819–823 (1996). doi:10.1021/js960076m.

    Article  PubMed  CAS  Google Scholar 

  12. M. R. Prausnitz, and J. S. Noonan. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci. 87:1479–188 (1998). doi:10.1021/js9802594.

    Article  PubMed  CAS  Google Scholar 

  13. Y. Li, J. Liu, D. Pan, and A. J. Hopfinger. A study of the relationship between cornea permeability and eye irritation using membrane-interaction QSAR analysis. Toxicol. Sci. 88:434–446 (2005). doi:10.1093/toxsci/kfi319.

    Article  PubMed  CAS  Google Scholar 

  14. C. Chen, and J. Yang. MI-QSAR models for prediction of corneal permeability of organic compounds. Acta Pharmacol. Sin. 27:193–204 (2006). doi:10.1111/j.1745-7254.2006.00241.x.

    Article  PubMed  CAS  Google Scholar 

  15. P. Saha, T. Uchiyama, K. J. Kim, and V. H. Lee. Permeability characteristics of primary cultured rabbit conjunctival epithelial cells to low molecular weight drugs. Curr. Eye Res. 15:1170–1174 (1996). doi:10.3109/02713689608995152.

    Article  PubMed  CAS  Google Scholar 

  16. Y. Horibe, K. Hosoya, K. J. Kim, T. Ogiso, and V. H. Lee. Polar solute transport across the pigmented rabbit conjunctiva: size dependence and the influence of 8-bromo cyclic adenosine monophosphate. Pharm. Res. 14:1246–1251 (1997). doi:10.1023/A:1012123411343.

    Article  PubMed  CAS  Google Scholar 

  17. L. Pitkanen, V. P. Ranta, H. Moilanen, and A. Urtti. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci. 46:641–646 (2005). doi:10.1167/iovs.04-1051.

    Article  PubMed  Google Scholar 

  18. D. Maurice. Injection of Drugs into the vitreous body. In I. H. Leopold, and R. P. Burns (eds.), Symposium on Ocular Therapy, John Wiley, New York, 1976, pp. 59–72.

    Google Scholar 

  19. S. Mishima, and D. M. Maurice. Ocular pharmacokinetics. In M. L. Saers (ed.), Handbook of Experimental Pharmacology, Vol. 59, Springer, Berlin, 1984, pp. 16–119.

    Google Scholar 

  20. A. Ohtori, and K. Tojo. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol. Pharm. Bull. 17:283–290 (1994).

    PubMed  CAS  Google Scholar 

  21. S. Friedrich, Y. L. Cheng, and B. Saville. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann. Biomed. Eng. 25:303–14 (1997). doi:10.1007/BF02648045.

    Article  PubMed  CAS  Google Scholar 

  22. P. J. Missel. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm. Res. 19:1636–1647 (2002). doi:10.1023/A:1020940927675.

    Article  PubMed  CAS  Google Scholar 

  23. P. J. Missel. Finite and infinitesimal representations of the vasculature: ocular drug clearance by vascular and hydraulic effects. Ann. Biomed. Eng. 30:1128–1139 (2002). doi:10.1114/1.1521417.

    Article  PubMed  Google Scholar 

  24. J. Xu, J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 17:664–669 (2000). doi:10.1023/A:1007517912927.

    Article  PubMed  CAS  Google Scholar 

  25. M. S. Stay, J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102 (2003). doi:10.1023/A:1022207026982.

    Article  PubMed  CAS  Google Scholar 

  26. W. Liu, Q. F. Liu, R. Perkins, G. Drusano, A. Louie, A. Madu, U. Mian, M. Mayers, and M. H. Miller. Pharmacokinetics of sparfloxacin in the serum and vitreous humor of rabbits: physicochemical properties that regulate penetration of quinolone antimicrobials. Antimicrob. Agents Chemother. 42:1417–1423 (1998).

    PubMed  CAS  Google Scholar 

  27. C. S. Dias, and A. K. Mitra. Vitreal elimination kinetics of large molecular weight FITC-labeled dextrans in albino rabbits using a novel microsampling technique. J. Pharm. Sci. 89:572–578 (2000). doi:10.1002/(SICI)1520-6017(200005)89:5<572::AID-JPS2>3.0.CO;2-P.

    Article  PubMed  CAS  Google Scholar 

  28. D. Maurice. Review: practical issues in intravitreal drug delivery. J. Ocular Pharmacol. Ther. 17:393–401 (2001). doi:10.1089/108076801753162807.

    Article  CAS  Google Scholar 

  29. B. H. Doft, J. Weiskopf, I. Nilsson-Ehle, and L. B. Wingard Jr. Amphotericin clearance in vitrectomized versus nonvitrectomized eyes. Ophthalmology. 92:1601–1605 (1985).

    PubMed  CAS  Google Scholar 

  30. L. B. Wingard Jr., J. J. Zuravleff, B. H. Doft, L. Berk, and J. Rinkoff. Intraocular distribution of intravitreally administered amphotericin B in normal and vitrectomized eyes. Invest. Ophthalmol. Vis. Sci. 30:2184–2189 (1989).

    PubMed  Google Scholar 

  31. H. S. Chin, T. S. Park, Y. S. Moon, and J. H. Oh. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 25:556–560 (2005). doi:10.1097/00006982-200507000-00002.

    Article  PubMed  Google Scholar 

  32. G. N. Scholes, W. J. O’Brien, G. W. Abrams, and M. F. Kubicek. Clearance of triamcinolone from vitreous. Arch. Ophthalmol. 103:1567–1569 (1985).

    PubMed  CAS  Google Scholar 

  33. J. Ambati, C. S. Canakis, J. W. Miller, E. S. Gragoudas, A. Edwards, D. J. Weissgold, I. Kim, F. C. Delori, and A. P. Adamis. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci. 41:1181–1185 (2000).

    PubMed  CAS  Google Scholar 

  34. A. C. Amrite, H. F. Edelhauser, and U. B. Kompella. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest. Ophthalmol. Vis. Sci. 49:320–332 (2008). doi:10.1167/iovs.07-0593.

    Article  PubMed  Google Scholar 

  35. H. Atluri, and A. K. Mitra. Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis. Exp. Eye Res. 76:315–320 (2003). doi:10.1016/S0014-4835(02)00311-1.

    Article  PubMed  CAS  Google Scholar 

  36. P. M. Hughes, R. Krishnamoorthy, and A. K. Mitra. Vitreous disposition of two acycloguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J. Ocular Pharmacol. Ther. 12:209–224 (1996).

    Article  CAS  Google Scholar 

  37. G. Peyman, D. Sanders, and M. Goldberg. Advances in uveal surgery, vitreous surgery, and the treatment of edophthalmitis. Appleton-Century-Crofts, New York, 1975.

    Google Scholar 

  38. H. J. Koh, L. Cheng, K. Bessho, T. R. Jones, M. C. Davidson, and W. R. Freeman. Intraocular properties of urokinase-derived antiangiogenic A6 peptide in rabbits. J. Ocular Pharmacol. Ther. 20:439–449 (2004).

    CAS  Google Scholar 

  39. A. G. Schenk, G. A. Peyman, and J. T. Paque. The intravitreal use of carbenicillin (Geopen) for treatment od pseudomonas endophthalmitis. Acta Ophthalmol. (Copenh). 52:707–717 (1974).

    CAS  Google Scholar 

  40. S. Macha, and A. K. Mitra. Ocular pharmacokinetics of cephalosporins using microdialysis. J. Ocular Pharmacol. Ther. 17:485–498 (2001). doi:10.1089/108076801753266866.

    Article  CAS  Google Scholar 

  41. W. M. Jay, P. Fishman, M. Aziz, and R. K. Shockley. Intravitreal ceftazidime in a rabbit model: dose- and time-dependent toxicity and pharmacokinetic analysis. J. Ocul. Pharmacol. 3:257–262 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. R. K. Shockley, W. M. Jay, T. R. Friberg, A. M. Aziz, J. P. Rissing, and M. Z. Aziz. Intravitreal ceftriaxone in a rabbit model. Dose- and time-dependent toxic effects and pharmacokinetic analysis. Arch Ophthalmol. 102:1236–1238 (1984).

    PubMed  CAS  Google Scholar 

  43. K. C. Cundy, G. Lynch, J. P. Shaw, M. J. Hitchcock, and W. A. Lee. Distribution and metabolism of intravitreal cidofovir and cyclic HPMPC in rabbits. Curr. Eye Res. 15:569–576 (1996). doi:10.3109/02713689609000768.

    Article  PubMed  CAS  Google Scholar 

  44. M. Unal, G. A. Peyman, C. Liang, H. Hegazy, L. C. Molinari, J. Chen, S. Brun, and P. J. Tarcha. Ocular toxicity of intravitreal clarithromycin. Retina. 19:442–446 (1999). doi:10.1097/00006982-199909000-00013.

    Article  PubMed  CAS  Google Scholar 

  45. R. Fiscella, G. A. Peyman, and P. H. Fishman. Duration of therapeutic levels of intravitreally injected liposome-encapsulated clindamycin in the rabbit. Can. J. Ophthalmol. 22:307–309 (1987).

    PubMed  CAS  Google Scholar 

  46. P. A. Pearson, G. J. Jaffe, D. F. Martin, G. J. Cordahi, H. Grossniklaus, E. T. Schmeisser, and P. Ashton. Evaluation of a delivery system providing long-term release of cyclosporine. Arch. Ophthalmol. 114:311–317 (1996).

    PubMed  CAS  Google Scholar 

  47. H. I. Meisels, and G. A. Peyman. Intravitreal erythromycin in the treatment of induced staphylococcal endophthalmitis. Ann. Ophthalmol. 8:939–943 (1976).

    PubMed  CAS  Google Scholar 

  48. S. K. Gupta, T. Velpandian, N. Dhingra, and J. Jaiswal. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J. Ocular Pharmacol. Ther. 16:511–518 (2000).

    Article  CAS  Google Scholar 

  49. B. S. Anand, H. Atluri, and A. K. Mitra. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int. J. Pharm. 281:79–88 (2004). doi:10.1016/j.ijpharm.2004.05.028.

    Article  PubMed  CAS  Google Scholar 

  50. P. Berthe, C. Baudouin, R. Garraffo, P. Hofmann, A. M. Taburet, and P. Lapalus. Toxicologic and pharmacokinetic analysis of intravitreal injections of foscarnet, either alone or in combination with ganciclovir. Invest. Ophthalmol. Vis. Sci. 35:1038–1045 (1994).

    PubMed  CAS  Google Scholar 

  51. S. Macha, and A. K. Mitra. Ocular disposition of ganciclovir and its monoester prodrugs following intravitreal administration using microdialysis. Drug Metab. Dispos. 30:670–675 (2002). doi:10.1124/dmd.30.6.670.

    Article  PubMed  CAS  Google Scholar 

  52. G. A. Peyman, D. R. May, E. S. Ericson, and D. Apple. Intraocular injection of gentamicin. Toxic effects of clearance. Arch. Ophthalmol. 92:42–47 (1974).

    PubMed  CAS  Google Scholar 

  53. C. Solans, M. A. Bregante, M. A. Garcia, and S. Perez. Ocular penetration of grepafloxacin after intravitreal administration in albino and pigmented rabbits. Chemotherapy. 50:133–137 (2004). doi:10.1159/000077887.

    Article  PubMed  CAS  Google Scholar 

  54. J. M. Leeds, S. P. Henry, L. Truong, A. Zutshi, A. A. Levin, and D. Kornbrust. Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab. Dispos. 25:921–926 (1997).

    PubMed  CAS  Google Scholar 

  55. A. G. Schenk, and G. A. Peyman. Lincomycin by direct intravitreal injection in the treatment of experimental bacterial endophthalmitis. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 190:281–291 (1974). doi:10.1007/BF00407889.

    Article  PubMed  CAS  Google Scholar 

  56. G. Velez, P. Yuan, C. Sung, G. Tansey, G. F. Reed, C. C. Chan, R. B. Nussenblatt, and M. R. Robinson. Pharmacokinetics and toxicity of intravitreal chemotherapy for primary intraocular lymphoma. Arch. Ophthalmol. 119:1518–1524 (2001).

    PubMed  CAS  Google Scholar 

  57. N. H. Leeds, G. A. Peyman, and B. House. Moxalactam (Moxam) in the treatment of experimental staphylococcal endophthalmitis. Ophthalmic. Surg. 13:653–656 (1982).

    PubMed  CAS  Google Scholar 

  58. S. Duvvuri, M. D. Gandhi, and A. K. Mitra. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr. Eye Res. 27:345–353 (2003). doi:10.1076/ceyr.27.6.345.18187.

    Article  PubMed  Google Scholar 

  59. H. Kim, K. G. Csaky, C. C. Chan, P. M. Bungay, R. J. Lutz, R. L. Dedrick, P. Yuan, J. Rosenberg, A. J. Grillo-Lopez, W. H. Wilson, and M. R. Robinson. The pharmacokinetics of rituximab following an intravitreal injection. Exp. Eye Res. 82:760–766 (2006). doi:10.1016/j.exer.2005.09.018.

    Article  PubMed  CAS  Google Scholar 

  60. E. K. Kim, and H. B. Kim. Pharmacokinetics of intravitreally injected liposome-encapsulated tobramycin in normal rabbits. Yonsei Med. J. 31:308–314 (1990).

    PubMed  CAS  Google Scholar 

  61. H. Kim, K. G. Csaky, L. Gravlin, P. Yuan, R. J. Lutz, P. M. Bungay, G. Tansey, D. E. F. Monasterio, G. K. Potti, G. Grimes, and M. R. Robinson. Safety and pharmacokinetics of a preservative-free triamcinolone acetonide formulation for intravitreal administration. Retina. 26:523–530 (2006). doi:10.1097/00006982-200605000-00005.

    Article  PubMed  Google Scholar 

  62. M. P. Pang, R. V. Branchflower, A. T. Chang, G. A. Peyman, H. Blatt, and H. K. Minatoya. Half-life and vitreous clearance of trifluorothymidine after intravitreal injection in the rabbit eye. Can. J. Ophthalmol. 27:6–9 (1992).

    PubMed  CAS  Google Scholar 

  63. M. A. Smith, J. A. Sorenson, C. Smith, M. Miller, and M. Borenstein. Effects of intravitreal dexamethasone on concentration of intravitreal vancomycin in experimental methicillin-resistant Staphylococcus epidermidis endophthalmitis. Antimicrob. Agents Chemother. 35:1298–1302 (1991).

    PubMed  CAS  Google Scholar 

  64. Y. C. Shen, M. Y. Wang, C. Y. Wang, T. C. Tsai, H. Y. Tsai, Y. F. Lee, and L. C. Wei. Clearance of intravitreal voriconazole. Invest. Ophthalmol. Vis. Sci. 48:2238–2241 (2007). doi:10.1167/iovs.06-1362.

    Article  PubMed  Google Scholar 

  65. D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34:D668–D672 (2006). doi:10.1093/nar/gkj067.

    Article  PubMed  CAS  Google Scholar 

  66. M. Barza, and M. McCue. Pharmacokinetics of aztreonam in rabbit eyes. Antimicrob. Agents Chemother. 24:468–473 (1983).

    PubMed  CAS  Google Scholar 

  67. S. J. Bakri, M. R. Snyder, J. M. Reid, J. S. Pulido, and R. J. Singh. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology. 114:855–859 (2007). doi:10.1016/j.ophtha.2007.01.017.

    Article  PubMed  Google Scholar 

  68. M. Barza, A. Kane, and J. Baum. The effects of infection and probenecid on the transport of carbenicillin from the rabbit vitreous humor. Invest. Ophthalmol. Vis. Sci. 22:720–726 (1982).

    PubMed  CAS  Google Scholar 

  69. J. P. Fisher, S. E. Civiletto, and R. K. Forster. Toxicity, efficacy, and clearance of intravitreally injected of cefazolin. Arch. Ophthalmol. 100:650–652 (1982).

    PubMed  CAS  Google Scholar 

  70. W. M. Jay, and R. K. Shockley. Toxicity and pharmacokinetics of cefepime (BMY-28142) following intravitreal injection in pigmented rabbit eyes. J. Ocul. Pharmacol. 4:345–349 (1988).

    Article  PubMed  CAS  Google Scholar 

  71. M. Barza, E. Lynch, and J. L. Baum. Pharmacokinetics of newer cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch. Ophthalmol. 111:121–125 (1993).

    PubMed  CAS  Google Scholar 

  72. H. W. Kwak, and D. J. D’Amico. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch. Ophthalmol. 110:259–266 (1992).

    PubMed  CAS  Google Scholar 

  73. S. Fauser, H. Kalbacher, N. Alteheld, K. Koizumi, T. U. Krohne, and A. M. Joussen. Pharmacokinetics and safety of intravitreally delivered etanercept. Graefes Arch. Clin. Exp. Ophthalmol. 242:582–586 (2004). doi:10.1007/s00417-004-0895-x.

    Article  PubMed  CAS  Google Scholar 

  74. L. F. Lopez-Cortes, M. T. Pastor-Ramos, R. Ruiz-Valderas, E. Cordero, A. Uceda-Montanes, C. M. Claro-Cala, and M. J. Lucero-Munoz. Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Invest. Ophthalmol. Vis. Sci. 42:1024–1028 (2001).

    PubMed  CAS  Google Scholar 

  75. A. Kane, M. Barza, and J. Baum. Intravitreal injection of gentamicin in rabbits. Effect of inflammation and pigmentation on half-life and ocular distribution. Invest. Ophthalmol. Vis. Sci. 20:593–597 (1981).

    PubMed  CAS  Google Scholar 

  76. S. Perez, C. Solans, M. A. Bregante, I. Pinilla, M. A. Garcia, and F. Honrubia. Pharmacokinetics and ocular penetration of grepafloxacin in albino and pigmented rabbits. J. Antimicrob. Chemother. 50:541–545 (2002). doi:10.1093/jac/dkf178.

    Article  PubMed  CAS  Google Scholar 

  77. J. C. Veltman, J. Podval, J. Mattern, K. L. Hall, R. J. Lambert, and H. F. Edelhauser. The disposition and bioavailability of 35S-GSH from 35S-GSSG in BSS PLUS in rabbit ocular tissues. J. Ocular Pharmacol. Ther. 20:256–268 (2004). doi:10.1089/1080768041223639.

    Article  CAS  Google Scholar 

  78. M. N. Iyer, F. He, T. G. Wensel, W. F. Mieler, M. S. Benz, and E. R. Holz. Clearance of intravitreal moxifloxacin. Invest. Ophthalmol. Vis. Sci. 47:317–319 (2006). doi:10.1167/iovs.05-1124.

    Article  PubMed  Google Scholar 

  79. R. M. Coco, M. I. Lopez, J. C. Pastor, and M. J. Nozal. Pharmacokinetics of intravitreal vancomycin in normal and infected rabbit eyes. J. Ocular Pharmacol. Ther. 14:555–563 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Pfizer Global Research and Development, Groton, CT, USA. The authors acknowledge Dr. Jane Meza (Biostatistics department of UNMC) for her critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Kompella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durairaj, C., Shah, J.C., Senapati, S. et al. Prediction of Vitreal Half-Life Based on Drug Physicochemical Properties: Quantitative Structure–Pharmacokinetic Relationships (QSPKR). Pharm Res 26, 1236–1260 (2009). https://doi.org/10.1007/s11095-008-9728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9728-7

KEY WORDS

Navigation