Skip to main content
Log in

Estimation of Drug–Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The amorphous form of a drug may provide enhanced solubility, dissolution rate, and bioavailability but will also potentially crystallize over time. Miscible polymeric additives provide a means to increase physical stability. Understanding the miscibility of drug–polymer systems is of interest to optimize the formulation of such systems. The purpose of this work was to develop experimental models which allow for more quantitative estimates of the thermodynamics of mixing amorphous drugs with glassy polymers.

Materials and Methods

The thermodynamics of mixing several amorphous drugs with amorphous polymers was estimated by coupling solution theory with experimental data. The entropy of mixing was estimated using Flory–Huggins lattice theory. The enthalpy of mixing and any deviations from the entropy as predicted by Flory–Huggins lattice theory were estimated using two separate experimental techniques; (1) melting point depression of the crystalline drug in the presence of the amorphous polymer was measured using differential scanning calorimetry and (2) determination of the solubility of the drug in 1-ethyl-2-pyrrolidone. The estimated activity coefficient was used to calculate the free energy of mixing of the drugs in the polymers and the corresponding solubility.

Results

Mixtures previously reported as miscible showed various degrees of melting point depression while systems reported as immiscible or partially miscible showed little or no melting point depression. The solubility of several compounds in 1-ethyl-2-pyrrolidone predicts that most drugs have a rather low solubility in poly(vinylpyrrolidone).

Conclusions

Miscibility of various drugs with polymers can be explored by coupling solution theories with experimental data. These approximations provide insight into the physical stability of drug–polymer mixtures and the thermodynamic driving force for crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. D. Gulsen, C.C. Li, and A. Chauhan. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res. 30:1071–1080 (2005). doi:10.1080/02713680500346633.

    Article  PubMed  CAS  Google Scholar 

  2. I.P. Kaur, and M. Kanwar. Ocular preparations: The formulation approach. Drug. Dev. Ind. Pharm. 28:473–493 (2002). doi:10.1081/DDC-120003445.

    Article  PubMed  CAS  Google Scholar 

  3. M. Diestelhorst, and G.K. Krieglstein. The ocular tolerability of a new ophthalmic drug-delivery system (NODS). Int. Ophthalmol. 18:1–4 (1994). doi:10.1007/BF00919405.

    Article  PubMed  CAS  Google Scholar 

  4. G.A. Lesher, and G.G. Gunderson. Continuous drug-delivery through the use of disposable contact-lenses. Optom. Vis. Sci. 70:1012–1018 (1993). doi:10.1097/00006324-199312000-00004.

    Article  PubMed  CAS  Google Scholar 

  5. M.V. Zelenskaya, E.F. Baru, G.A. Babich, A.A. Kivaev, A.A. Suprun, and A.A. Ryabtseva. Soft contact-lenses impregnated with hypotensive drugs in the treatment of glaucoma. Vestn. Oftalmol. 102(3):14–17 (1986).

    Google Scholar 

  6. V.J. Marmion, and M.R. Jain. Role of soft contact-lenses and delivery of drugs. Trans. Ophthalmol. Soc. U. K. 96:319–321 (1976).

    PubMed  CAS  Google Scholar 

  7. S.R. Waltman and H.E. Kaufman. Use of hydrophilic contact lenses to increase ocular penetration of topical drugs. Invest. Ophthalmol. 9:250–255 (1970).

    Google Scholar 

  8. B. Tesfamariam. Drug release kinetics from stent device-based delivery systems. Invest. Ophthalmol. 51:118–125 (2008).

    CAS  Google Scholar 

  9. J.P. Chen. Safety and efficacy of the drug-eluting stent: A double-edged sword? South Med. J. 101:174–178 (2008).

    PubMed  Google Scholar 

  10. N. Kukreja, Y. Onuma, J. Daemen, and P.W. Serruys. The future of drug-eluting stents. Pharmacol. Res. 57:171–180 (2008). doi:10.1016/j.phrs.2008.01.012.

    Article  PubMed  CAS  Google Scholar 

  11. J.L. Ifkovits, and J.A. Burdick. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13:2369–2385 (2007). doi:10.1089/ten.2007.0093.

    Article  PubMed  CAS  Google Scholar 

  12. W.K. Wan, L. Yang, and D.T. Padavan. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine. 2:483–509 (2007). doi:10.2217/17435889.2.4.483.

    Article  PubMed  CAS  Google Scholar 

  13. T. Sharkawi, F. Cornhill, A. Lafont, P. Sabaria, and M. Vert. Intravascular bioresorbable polymeric stents: A potential alternative to current drug eluting metal stents. J. Pharm. Sci. 96:2829–2837 (2007). doi:10.1002/jps.20957.

    Article  PubMed  CAS  Google Scholar 

  14. C.B. Packhaeuser, J. Schnieders, C.G. Oster, and T. Kissel. In situ forming parenteral drug delivery systems: An overview. Eur. J. Pharm. Biopharm. 58:445–455 (2004). doi:10.1016/j.ejpb.2004.03.003.

    Article  PubMed  CAS  Google Scholar 

  15. C. Vauthier, C. Dubernet, E. Fattal, H. Pinto-Alphandary, and P. Couvreur. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 55:519–548 (2003). doi:10.1016/S0169-409X(03)00041-3.

    Article  PubMed  CAS  Google Scholar 

  16. H. Kimura, and Y. Ogura. Biodegradable polymers for ocular drug delivery. Ophthalmologica. 215:143–155 (2001). doi:10.1159/000050849.

    Article  PubMed  CAS  Google Scholar 

  17. J. Heller. Biodegradable polymers in controlled drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 1:39–90 (1984).

    PubMed  CAS  Google Scholar 

  18. R.G. Buckles. Biomaterials for drug delivery systems. J. Biomed. Materi. Res. 17:109–128 (1983). doi:10.1002/jbm.820170110.

    Article  CAS  Google Scholar 

  19. W. Schneider, W.D. Bussmann, A. Hartmann, and M. Kaltenbach. Nitrate therapy in heart-failure. Cardiology. 79:5–13 (1991).

    Article  PubMed  Google Scholar 

  20. P.A. Todd, K.L. Goa, and H.D. Langtry. Transdermal nitroglycerin (glyceryl trinitrate)—A review of its pharmacology and therapeutic use. Drugs. 40:880–902 (1990). doi:10.2165/00003495-199040060-00009.

    Article  PubMed  CAS  Google Scholar 

  21. J.L. Ford. The current status of solid dispersions. Pharm. Acta Helv. 61:69–88 (1986).

    PubMed  CAS  Google Scholar 

  22. A.T.M. Serajuddin. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88:1058–1066 (1999). doi:10.1021/js980403l.

    Article  PubMed  CAS  Google Scholar 

  23. S. Sethia, and E. Squillante. Solid dispersions: Revival with greater possibilities and applications in oral drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 20:215–247 (2003). doi:10.1615/CritRevTherDrugCarrierSyst.v20.i23.40.

    Article  CAS  Google Scholar 

  24. V. Mummaneni, and R.C. Vasavada. Solubilization and dissolution of famotidine from solid glass dispersions of xylitol. Int. J. Pharm. 66:71–77 (1990). doi:10.1016/0378-5173(90)90386-I.

    Article  CAS  Google Scholar 

  25. D.Q.M. Craig. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 231:131–144 (2002). doi:10.1016/S0378-5173(01)00891-2.

    Article  PubMed  CAS  Google Scholar 

  26. L.H. Emara, R.M. Badr, and A. Abd Elbary. Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Dev. Ind. Pharm. 28:795–807 (2002). doi:10.1081/DDC-120005625.

    Article  PubMed  CAS  Google Scholar 

  27. A. Fahr, and X. Liu. Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery. 4:403–416 (2007). doi:10.1517/17425247.4.4.403.

    Article  PubMed  CAS  Google Scholar 

  28. V. Andronis, and G. Zografi. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids. 271:236–248 (2000). doi:10.1016/S0022-3093(00)00107-1.

    Article  CAS  Google Scholar 

  29. K.J. Crowley, and G. Zografi. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm Res. 20:1417–1422 (2003). doi:10.1023/A:1025706110520.

    Article  PubMed  CAS  Google Scholar 

  30. S. Vanhee, R. Koningsveld, H. Berghmans, K. Solc, and W.H. Stockmayer. Thermodynamic stability of immiscible polymer blends. Macromolecules. 33:3924–3931 (2000). doi:10.1021/ma9918102.

    Article  CAS  Google Scholar 

  31. J.W. Barlow, and D.R. Paul. Polymer alloys. Annu. Rev. Mater. Sci. 11:299–319 (1981). doi:10.1146/annurev.ms.11.080181.001503.

    Article  CAS  Google Scholar 

  32. M.M. Coleman, J.F. Graf, and P.C. Painter. Specific Interactions and the Miscibility of Polymer Blends. Technomic Publishing AG, Lancaster, Pennsylvania, 1991.

  33. K.K. Chee. Thermodynamic study of glass transitions in miscible polymer blends. Polymer. 36:809–813 (1995). doi:10.1016/0032-3861(95)93112-Y.

    Article  CAS  Google Scholar 

  34. E. Meaurio, E. Zuza, and J.R. Sarasua. Miscibility and specific interactions in blends of poly(L-lactide) with poly(vinylphenol). Macromolecules. 38:1207–1215 (2005). doi:10.1021/ma047818f.

    Article  CAS  Google Scholar 

  35. P. Perrin, and R.E. Prudhomme. Miscibility behavior of PVC polymethacrylate blends—Temperature and composition analysis. Polymer. 32:1468–1473 (1991). doi:10.1016/0032-3861(91)90428-L.

    Article  CAS  Google Scholar 

  36. Y. Park, B. Veytsman, M. Coleman, and P. Painter. The miscibility of hydrogen-bonded polymer blends: Two self-associating polymers. Macromolecules. 38:3703–3707 (2005). doi:10.1021/ma0473115.

    Article  CAS  Google Scholar 

  37. S.B. Ahn, and H.M. Jeong. Phase behavior and hydrogen bonding in poly(ethylene-co-vinyl alcohol) poly(N-vinyl-2-pyrrolidone) blends. Korea Polym. J. 6:389–395 (1998).

    CAS  Google Scholar 

  38. S.L. Shamblin, E.Y. Huang, and G. Zografi. The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose. J. Therm. Anal. 47:1567–1579 (1996). doi:10.1007/BF01992846.

    Article  CAS  Google Scholar 

  39. P.J. Marsac, S.L. Shamblin, and L.S. Taylor. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm. Res. 23:2417–2426 (2006). doi:10.1007/s11095-006-9063-9.

    Article  PubMed  CAS  Google Scholar 

  40. E.J. Moskala, D.F. Varnell, and M.M. Coleman. Concerning the miscibility of poly(vinyl phenol) blends—FTi.r. study. Polymer. 26:228–234 (1985). doi:10.1016/0032-3861(85)90034-5.

    Article  CAS  Google Scholar 

  41. M.M. Coleman, and P.C. Painter. Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20:1–59 (1995). doi:10.1016/0079-6700(94)00038-4.

    Article  CAS  Google Scholar 

  42. R.S. Stein. Crystallization from polymer blends. Mater. Res. Soc. Symp. Proc. 321:531–542 (1994).

    CAS  Google Scholar 

  43. A.R. Kamdar, Y.S. Hu, P. Ansems, S.P. Chum, A. Hiltner, and E. Baer. Miscibility of propylene-ethylene copolymer blends. Macromolecules. 39:1496–1506 (2006). doi:10.1021/ma052214c.

    Article  CAS  Google Scholar 

  44. D. Frezzotti, and G.P. Ravanetti. Evaluation of the Flory–Huggins interaction parameter for poly(styrene-co-acrylo-nitrile) and poly(methylmethacrylate) blend from enthalpy of mixing measurements. J. Therm. Anal. 41:1237–1243 (1994). doi:10.1007/BF02549918.

    Article  CAS  Google Scholar 

  45. P.C. Painter, J.F. Graf, and M.M. Coleman. Effect of hydrogen-bonding on the enthalpy of mixing and the composition dependence of the glass-transition temperature in polymer blends. Macromolecules. 24:5630–5638 (1991). doi:10.1021/ma00020a023.

    Article  CAS  Google Scholar 

  46. K. Khougaz, and S.D. Clas. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 89:1325–1334 (2000). doi:10.1002/1520-6017(200010)89:10<1325::AID-JPS10>3.0.CO;2-5.

    Article  PubMed  CAS  Google Scholar 

  47. H. Konno, and L.S. Taylor. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 95:2692–2705 (2006). doi:10.1002/jps.20697.

    Article  PubMed  CAS  Google Scholar 

  48. L.S. Taylor, and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997). doi:10.1023/A:1012167410376.

    Article  PubMed  CAS  Google Scholar 

  49. L.S. Taylor, and G. Zografi. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 87:1615–1621 (1998). doi:10.1021/js9800174.

    Article  PubMed  CAS  Google Scholar 

  50. P. Di Martino, E. Joiris, R. Gobetto, A. Masic, G.F. Palmieri, and S. Martelli. Ketoprofen-poly(vinylpyrrolidone) physical interaction. J. Cryst. Growth. 265:302–308 (2004). doi:10.1016/j.jcrysgro.2004.02.023.

    Article  CAS  Google Scholar 

  51. P.J. Marsac, H. Konno, and L.S. Taylor. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm. Res. 23:2306–2316 (2006). doi:10.1007/s11095-006-9047-9.

    Article  PubMed  CAS  Google Scholar 

  52. S.I. Sandler. Chemical & Engineering Thermodynamics. Wiley, New York, 1999.

    Google Scholar 

  53. S.H. Yalkowsky. Solubility and Solubilization in Aqueous Media. Oxford University Press, New York, 1999.

    Google Scholar 

  54. P.J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.

    Google Scholar 

  55. L. Mandelkern. Crystallization of polymers. McGraw-Hill, New York, 1964.

    Google Scholar 

  56. T. Nishi, and T.T. Wang. Melting-point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride) poly(methyl methacrylate) mixtures. Macromolecules. 8:909–915 (1975). doi:10.1021/ma60048a040.

    Article  CAS  Google Scholar 

  57. M. Rubinstein, and R.H. Colby. Polymer Physics. Oxford University Press, New York, 2003.

    Google Scholar 

  58. R.J. Young, and P.A. Lovell. Introduction to Polymers. Nelson Thornes, Cheltenham, UK, 1991.

  59. S.L. Shamblin, X.L. Tang, L.Q. Chang, B.C. Hancock, and M.J. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B. 103:4113–4121 (1999). doi:10.1021/jp983964+.

    Article  CAS  Google Scholar 

  60. B.C. Hancock, and M. Parks. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17:397–404 (2000). doi:10.1023/A:1007516718048.

    Article  PubMed  CAS  Google Scholar 

  61. X.L.C. Tang, M.J. Pikal, and L.S. Taylor. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm. Res. 19:477–483 (2002). doi:10.1023/A:1015147729564.

    Article  PubMed  CAS  Google Scholar 

  62. G.A. Jeffrey. An Introduction to Hydrogen Bonding. Oxford University Press, New York, 1997.

    Google Scholar 

  63. G. Van den Mooter, M. Wuyts, N. Blaton, R. Busson, P. Grobet, P. Augustijns, and R. Kinget. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12:261–269 (2001). doi:10.1016/S0928-0987(00)00173-1.

    Article  PubMed  Google Scholar 

  64. D.J. Greenhalgh, A.C. Williams, P. Timmins, and P. York. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 88:1182–1190 (1999). doi:10.1021/js9900856.

    Article  PubMed  CAS  Google Scholar 

  65. K. Six, C. Leuner, J. Dressman, G. Verreck, J. Peeters, N. Blaton, P. Augustijns, R. Kinget, and G. Van den Mooter. Thermal properties of hot-stage extrudates of itraconazole and eudragit E100—Phase separation and polymorphism. J. Therm. Anal. Calorim. 68:591–601 (2002). doi:10.1023/A:1016056222881.

    Article  CAS  Google Scholar 

  66. S.L. Shamblin, L.S. Taylor, and G. Zografi. Mixing behavior of colyophilized binary systems. J. Pharm. Sci. 87:694–701 (1998). doi:10.1021/JS9704801.

    Article  PubMed  CAS  Google Scholar 

  67. M. Yoshioka, B.C. Hancock, and G. Zografi. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84:983–986 (1995). doi:10.1002/jps.2600840814.

    Article  PubMed  CAS  Google Scholar 

  68. A. Saleki-Gerhardt, and G. Zografi. Nonisothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res. 11:1166–1173 (1994). doi:10.1023/A:1018945117471.

    Article  PubMed  CAS  Google Scholar 

  69. P. Tong, and G. Zografi. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J. Pharm. Sci. 90:1991–2004 (2001). doi:10.1002/jps.1150.

    Article  PubMed  CAS  Google Scholar 

  70. C.Q. Sun. A novel method for deriving true density of pharmaceutical solids including hydrates and water-containing powders. J. Pharm. Sci. 93:646–653 (2004). doi:10.1002/jps.10595.

    Article  PubMed  CAS  Google Scholar 

  71. K. Six, H. Berghmans, C. Leuner, J. Dressman, K. Van Werde, J. Mullens, L. Benoist, M. Thimon, L. Meublat, G. Verreck, J. Peeters, M. Brewster, and G. Van den Mooter. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II. Pharm. Res. 20:1047–1054 (2003). doi:10.1023/A:1024414423779.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a fellowship from Merck Research Laboratories. AstraZeneca is acknowledged for financial support. Jared Baird is thanked for his help in measuring the solubility of the model compounds in 1-ethyl-2-pyrrolidone. Håkan Wikström is thanked for his help in measuring the solubility of sucrose using HPLC and Sheri Shamblin is thanked for providing heat capacity values for indomethacin and sucrose. Professors George Zografi, Rodolfo Pinal, Ken Morris, and Steve Byrn are acknowledged for their input. The PhRMA Foundation is acknowledged for a pre-doctoral fellowship to PJM. LST thanks AFPE/AACP for a New Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsac, P.J., Li, T. & Taylor, L.S. Estimation of Drug–Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. Pharm Res 26, 139–151 (2009). https://doi.org/10.1007/s11095-008-9721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9721-1

KEY WORDS

Navigation