Skip to main content
Log in

Formation of Zinc–Peptide Spherical Microparticles During Lyophilization from tert-Butyl Alcohol/Water Co-solvent System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To understand the mechanism of spherical microparticle formation during lyophilizing a tert-Butyl alcohol (TBA)/water solution of a zinc peptide adduct.

Method

A small peptide, PC-1, as well as zinc PC-1 at (3:2) and (3:1) ratios, were dissolved in 44% (wt.%) of TBA/water, gradually frozen to −50°C over 2 h (“typical freezing step”), annealed at −20°C for 6 h (“annealing step”), and subsequently lyophilized with primary and secondary drying. Zinc peptide (3:1) lyophile was also prepared with quench cooling instead of the typical freezing step, or without the annealing step. Other TBA concentrations, i.e., 25%, 35%, 54% and 65%, were used to make the zinc peptide (3:1) adduct lyophile with the typical freezing and annealing steps. The obtained lyophile was analyzed by Scanning Electron Microscopy (SEM). The zinc peptide solutions in TBA/water were analyzed by Differential Scanning Calorimeter (DSC). The surface tension of the TBA/water co-solvent system was measured by a pendant drop shape method.

Results

With typical freezing and annealing steps, the free peptide lyophile showed porous network-like structure that is commonly seen in lyophilized products. However, with increasing the zinc to peptide ratio, uniform particles were gradually evolved. Zinc peptide (3:1) adduct lyophiles obtained from 25%, 35% and 44% TBA exhibit a distinctive morphology of uniform and spherical microparticles with diameters of ∼3–4 μm, and the spherical zinc peptide particles are more predominant when the TBA level approaches 20%. Adopting quench cooling in the lyophilization cycle leads to irregular shape fine powders, and eliminating the annealing step causes rough particles surface. When TBA concentration increases above 54%, the lyophiles demonstrate primarily irregular shape particles.

Conclusions

A proposed mechanism of spherical particle formation of the 3:1 zinc peptide encompasses the freezing of a TBA/water solution (20–70% TBA) causing the formation of a TBA hydrate phase (“dispersed TBA hydrate”). Decreasing the temperature further causes the formation of a eutectic mixture between TBA hydrate (“eutectic TBA hydrate”) and water. Due to its low aqueous solubility, the zinc peptide adduct accumulates in both of the dispersed and eutectic TBA hydrate phases to form a hydrophobic “oil” phase. Since the eutectic TBA hydrate phase is surrounded by ice, a “solid emulsion” forms to lower the interfacial energy, and gives rise to spherical zinc peptide particles upon solvent sublimation. Possibility of liquid–liquid phase separation during freeze-drying was also investigated, and no evidence was found to support this alternative mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

References

  1. S. L. Nail, S. Jiang, S. Chongprasert, and S. A. Knopp. Fundamentals of freeze-drying. Pharm. Biotechnol. 14:281–360 (2002).

    PubMed  CAS  Google Scholar 

  2. N. A. Williams and G. P. Polli. The lyophilization of pharmaceuticals: a literature review. J. Parenter. Sci. Technol. 38(2):48–59 (1984).

    PubMed  CAS  Google Scholar 

  3. N. Ni, M. Tesconi, S. E. Tabibi, S. Gupta, and S. H. Yalkowsky. Use of pure t-butanol as a solvent for freeze-drying: a case study. Int. J. Pharm. 226(1–2):39–46 (2001) Medline. DOI 10.1016/S0378-5173(01)00757-8.

    Article  PubMed  CAS  Google Scholar 

  4. D. W. Flamberg, D. L. Francis, S. L. Morgan, and G. F. Wickes. Low temperature vacuum drying of sterile parenterals from ethanol. Bull. Parenter. Drug. Assoc. 24(5):209–217 (1970).

    PubMed  CAS  Google Scholar 

  5. D. L. Teagarden and D. S. Baker. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur. J. Pharm. Sci. 15(2):115–133 (2002) Medline, DOI 10.1016/S0928-0987(01)00221-4.

    Article  PubMed  CAS  Google Scholar 

  6. K. Kasraian and P. P. DeLuca. The effect of tertiary butyl alcohol on the resistance of the dry product layer during primary drying. Pharm. Res. 12(4):491–495 (1995) Medline, DOI 10.1023/A:1016285425670.

    Article  PubMed  CAS  Google Scholar 

  7. J. Oesterle, F. Franks, and T. Auffret. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying. Pharm. Dev. Technol. 3(2):175–183 (1998) Medline, DOI 10.3109/10837459809028493.

    Article  PubMed  CAS  Google Scholar 

  8. C. Telang and R. Suryanarayanan. Crystallization of cephalothin sodium during lyophilization from tert-butyl alcohol–water cosolvent system. Pharm Res. 22(1):153–160 (2005) Medline, DOI 10.1007/s11095-004-9021-3.

    Article  PubMed  CAS  Google Scholar 

  9. D. J. Van Drooge, W. L. Hinrichs, and H. W. Frijlink. Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent. J. Pharm. Sci. 93(3):713–725 (2004) Medline, DOI 10.1002/jps.10590.

    Article  PubMed  Google Scholar 

  10. Z. Wang, Y. Deng, and X. Zhang. The novel application of tertiary butyl alcohol in the preparation of hydrophobic drug–HPbetaCD complex. J. Pharm. Pharmacol. 58(3):409–414 (2006) Medline, DOI 10.1211/jpp.58.3.0017.

    Article  PubMed  CAS  Google Scholar 

  11. J. Cui, C. Li, Y. Deng, Y. Wang, and W. Wang. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. Int. J. Pharm. 312(1–2):131–136 (2006) Medline, DOI 10.1016/j.ijpharm.2006.01.004.

    Article  PubMed  CAS  Google Scholar 

  12. S. Wittaya-Areekul, G. F. Needham, N. Milton, M. L. Roy, and S. L. Nail. Freeze-drying of tert-butanol/water cosolvent systems: a case report on formation of a friable freeze-dried powder of tobramycin sulfate. J. Pharm. Sci. 91(4):1147–1155 (2002) Medline, DOI 10.1002/jps.10113.

    Article  PubMed  CAS  Google Scholar 

  13. Y. Koyama, M. Kamat, R. J. De Angelis, R. Srinivasan, and P. P. DeLuca. Effect of solvent addition and thermal treatment on freeze drying of cefazolin sodium. J. Parenter. Sci. Technol. 42(2):47–52 (1988).

    PubMed  CAS  Google Scholar 

  14. M. J. Pikal, A. L. Lukes, J. E. Lang, and K. Gaines. Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability. J. Pharm. Sci. 67(6):767–773 (1978) Medline, DOI 10.1002/jps.2600670609.

    Article  PubMed  CAS  Google Scholar 

  15. M. J. Pikal, A. L. Lukes, and J. E. Lang. Thermal decomposition of amorphous beta-lactam antibacterials. J. Pharm. Sci. 66(9):1312–1316 (1977) Medline, DOI 10.1002/jps.2600660927.

    Article  PubMed  CAS  Google Scholar 

  16. K. Kasraian and P. P. DeLuca. Thermal analysis of the tertiary butyl alcohol–water system and its implications on freeze-drying. Pharm. Res. 12(4):484–490 (1995) Medline, DOI 10.1023/A:1016233408831.

    Article  PubMed  CAS  Google Scholar 

  17. K. A. Jackson and J. D. Hunt. Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME. 236:1129–1142 (1966).

    CAS  Google Scholar 

  18. A. Martin. Physical Pharmacy. Lippincott Williams & Wilkins, Baltimore, MD, 1993, pp. 362–368.

    Google Scholar 

  19. M. C. Heller, J. F. Carpenter, and T. W. Randolph. Effects of phase separating systems on lyophilized hemoglobin. J. Pharm. Sci. 85:1358–1362 (1996) Medline, DOI 10.1021/js960019t.

    Article  PubMed  CAS  Google Scholar 

  20. M. C. Heller, J. F. Carpenter, and T. W. Randolph. Manipulation of lyophilization-induced phase separation: implications for pharmaceutical proteins. Biotechnol. Prog. 13:590–596 (1997) Medline, DOI 10.1021/bp970081b.

    Article  PubMed  CAS  Google Scholar 

  21. M. C. Heller, J. F. Carpenter, and T. W. Randolph. Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnol. Bioeng. 63:166–174 (1999) Medline, DOI 10.1002/(SICI)1097-0290(19990420)63:2<166::AID-BIT5>3.0.CO;2-H.

    Article  PubMed  CAS  Google Scholar 

  22. M. C. Heller, J. F. Carpenter, and T. W. Randolph. Conformational stability of lyophilized PEGylated proteins in a phase-separating system. J. Pharm. Sci. 88:58–64 (1999) Medline, DOI 10.1021/js980257j.

    Article  PubMed  CAS  Google Scholar 

  23. F. Franks. Freeze-drying: from empiricism to predictability. The significance of glass transitions. Dev. Biol. Stand. 74:9–18 (1992).

    PubMed  CAS  Google Scholar 

  24. F. Franks. Freeze-drying: a combination of physics, chemistry, engineering and economics. Jpn. J. Freezing Drying. 38:5–16 (1992).

    Google Scholar 

  25. R. H. Hatley and A. Mant. Determination of the unfrozen water content of maximally freeze-concentrated carbohydrate solutions. Int. J. Biol. Macromol. 15:227–232 (1993) Medline, DOI 10.1016/0141-8130(93)90042-K.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, F., Ni, N., Chen, JW. et al. Formation of Zinc–Peptide Spherical Microparticles During Lyophilization from tert-Butyl Alcohol/Water Co-solvent System. Pharm Res 25, 2799–2806 (2008). https://doi.org/10.1007/s11095-008-9647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9647-7

KEY WORDS

Navigation