Skip to main content

Advertisement

Log in

Delivery by Cationic Gelatin Nanoparticles Strongly Increases the Immunostimulatory Effects of CpG Oligonucleotides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cationized gelatin nanoparticles (GNPs) were used as carrier to improve delivery of immunostimulatory CpG oligonucleotides (CpG ODN) both in vitro and in vivo.

Methods

Uptake of CpG ODN-loaded cationized gelatin nanoparticles (CpG-GNPs) into murine myeloid dendritic cells (DCs) and their respective immunostimulatory activity was monitored. In vivo, induction of cytokine secretion by CpG-GNPs was measured. For experiments on primary human cells, prototypes of the three CpG ODN classes were adsorbed onto GNPs. Uptake and induction of proinflammatory cytokines were assessed in human plasmacytoid DCs and B cells, the only existing human target cells for CpG ODN.

Results

In the murine system, gelatin nanoparticle formulations enhanced the uptake and immunostimulatory activity of CpG ODN both in vitro and in vivo. Furthermore, delivery by cationized gelatin nanoparticles of CpG ODN of the classes B and C to primary human plasmacytoid DCs increased production of IFN-α, a key cytokine in the driving of both the innate and adaptive immune responses.

Conclusion

GNPs can be used as a biodegradable and well tolerated carrier to deliver CpG ODN to their target cells and strongly increase activation of the immune system. This concept may be applied as novel adjuvant for antiviral and antitumoral vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. M. Krieg. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev., Drug Discov. 5(6):471–484 (2006).

    Article  CAS  Google Scholar 

  2. M. Diwan, M. Tafaghodi, and J. Samuel. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release 85(1–3):247–262 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. M. Diwan, P. Elamanchili, M. Cao, and J. Samuel. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr. Drug Deliv. 1(4):405–412 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. S. Jain, W. T. Yap, and D. J. Irvine. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules 6(5):2590–2600 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Y. J. Kwon, S. M. Standley, S. L. Goh, and J. M. J. Frechet. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release 105(3):199–212(2005).

    Article  PubMed  CAS  Google Scholar 

  6. M. Singh, G. Ott, J. Kazzaz, M. Ugozzoli, M. Briones, J. Donnelly, and D. T. O’Hagan. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm. Res. 18(10):1476–1479 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Suzuki, D. Wakita, K. Chamoto, Y. Narita, T. Tsuji, T. Takeshima, H. Gyobu, Y. Kawarada, S. Kondo, S. Akira, H. Katoh, H. Ikeda, and T. Nishimura. Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity. Cancer Res. 64(23):8754–8760 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. A. Joseph, I. Louria-Hayon, A. Plis-Finarov, E. Zeira, Z. Zakay-Rones, E. Raz, T. Hayashi, K. Takabayashi, Y. Barenholz, and E. Kedar. Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. Vaccine 20(27–28):3342–3354 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. R. Rankin, R. Pontarollo, X. Ioannou, A. M. Krieg, R. Hecker, L. A. Babiuk, and Littel-van den Hurk van Drunen, S. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 11(5):333–340 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. G. Hartmann, and A. M. Krieg. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164(2):944–953 (2000).

    PubMed  CAS  Google Scholar 

  11. S. Rothenfusser, E. Tuma, S. Endres, and G. Hartmann. Plasmacytoid dendritic cells: the key to CpG. Hum. Immunol. 63(12):1111–1119 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. G. Hartmann, J. Battiany, H. Poeck, M. Wagner, M. Kerkmann, N. Lubenow, S. Rothenfusser, and S. Endres. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol. 33(6):1633–1641 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. A. G. Ward, and A. Courts. The Science and Technology of Gelatin. Academic Press, New York, 1977.

    Google Scholar 

  14. H. G. Schwick, and K. Heide. Immunochemistry and immunology of collagen and gelatin. Bibl. Haematol. 33:111–125 (1969).

    PubMed  CAS  Google Scholar 

  15. C. Coester, H. von Briesen, K. Langer, and J. Kreuter. Gelatin nanoparticles by two step desolvation—a new preparation method, surface modifications and cell uptake. J. Microencapsul 17:187–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. K. Zwiorek, J. Kloeckner, E. Wagner, and C. Coester. Gelatin nanoparticles as a new and simple gene delivery system. J. Pharm. Pharm. Sci. 7(4):22–28 (2004).

    CAS  Google Scholar 

  17. M. B. Lutz, N. Kukutsch, A. L. Ogilvie, S. Rossner, F. Koch, N. Romani, and G. Schuler. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223(1):77–92 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. C. Coester, P. Nayyar, and J. Samuel. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62(3):306–314 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Krieg. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20:709–760 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. T. Jakob, P. S. Walker, A. M. Krieg, E. Von Stebut, M. C. Udey, and J. C. Vogel. Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL-12 production: implications for the augmentation of Th1 responses. Int. Arch. Allergy Immunol. 118(2–4):457–461 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. J. F. Arrighi, M. Rebsamen, F. Rousset, V. Kindler, and C. Hauser. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-a, and contact sensitizers. J. Immunol. 166(6):3837–3845 (2001).

    PubMed  CAS  Google Scholar 

  23. N. Iijima, Y. Yanagawa, and K. Onoe. Role of early- or late-phase activation of p38 mitogen-activated protein kinase induced by tumour necrosis factor-a or 2,4-dinitrochlorobenzene during maturation of murine dendritic cells. Immunology 110(3):322–328 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. A. Krug, S. Rothenfusser, V. Hornung, B. Jahrsdorter, S. Blackwell, Z. K. Ballas, S. Endres, A. M. Krieg, and G. Hartmann. Identification of CpG oligonucleotide sequences with high induction of IFN-a/b in plasmacytoid dendritic cells. Eur. J. Immunol. 31:2154–2163 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. J. D. Marshall, K. Fearon, C. Abbate, S. Subramanian, P. Yee, J. Gregorio, R. L. Coffman, and G. Van Nest. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol. 73(6):781–792 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. L. T. Costa, M. Kerkmann, G. Hartmann, S. Endres, P. M. Bisch, W. M. Heckl, and S. Thalhammer. Structural studies of oligonucleotides containing G-quadruplex motifs using AFM. Biochem. Biophys. Res. Commun. 313(4):1065–1072 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Kerkmann, L. T. Costa, C. Richter, S. Rothenfusser, J. Battiany, V. Hornung, J. Johnson, S. Englert, T. Ketterer, W. Heckl, S. Thalhammer, S. Endres, and G. Hartmann. Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-a induction by CpG-A in plasmacytoid dendritic cells. J. Biol. Chem. 280(9):8086–8093 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. S. Raychaudhuri, and K. L. Rock. Fully mobilizing host defense: building better vaccines. Nat. Biotechnol. 16(11):1025–1031 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. M. Singh, and D. T. O’Hagan. Recent advances in vaccine adjuvants. Pharm. Res. 19(6):715–728 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. L. Thiele, B. Rothen-Rutishauser, S. Jilek, H. Wunderli-Allenspach, H. P. Merkle, and E. Walter. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release 76(1–2):59–71 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. M. Roser, and T. Kissel. Surface-modified biodegradable albumin nano- and microspheres. Part 1. Preparation and characterization. Eur. J. Pharm. Biopharm. 39(1):8–12 (1993).

    CAS  Google Scholar 

  32. C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2):315–322 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. A. T. Davis, R. Estensen, and P. G. Quie. Cytochalasin B. 3. Inhibition of human polymorphonuclear leukocyte phagocytosis. Proc. Soc. Exp. Biol. Med. 137(1):161–164 (1971).

    PubMed  CAS  Google Scholar 

  34. J. M. Brewer, K. G. Pollock, L. Tetley, and D. G. Russell. Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J. Immunol. 173(10):6143–6150 (2004).

    PubMed  CAS  Google Scholar 

  35. K. Honda, Y. Ohba, H. Yanai, H. Negishi, T. Mizutani, A. Takaoka, C. Taya, and T. Taniguchi. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434:1035–1040 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. K. Fearon, J. D. Marshall, C. Abbate, S. Subramanian, P. Yee, J. Gregorio, G. Teshima, G. Ott, S. Tuck, G. Van Nest, and R. L. Coffman. A minimal human immunostimulatory CpG motif that potently induces IFN-g and IFN-a production. Eur. J. Immunol. 33(8):2114–2122 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. J. D. Marshall, D. Higgins, C. Abbate, P. Yee, G. Teshima, G. Ott, T. dela Cruz, D. Passmore, K. L. Fearon, S. Tuck, and G. Van Nest. Polymyxin B enhances ISS-mediated immune responses across multiple species. Cell. Immunol. 229(2):93–105 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. C. C. N. Wu, J. Lee, E. Raz, M. Corr, and D. A. Carson. Necessity of oligonucleotide aggregation for toll-like receptor 9 activation. J. Biol. Chem. 279(32):33071–33078 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. V. Hornung, J. Ellegast, S. Kim, K. Brzózka, A. Jung, H. Kato, H. Poeck, S. Akira, K.-K. Conzelmann, M. Schlee, S. Endres, and G. Hartmann. 5′-Triphosphate RNA Is the Ligand for RIG-I. Science 314(5801):994–997 (2006).

    Article  PubMed  Google Scholar 

  40. S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. Reis e Sousa. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. V. Hornung, M. Guenthner-Biller, C. Bourquin, A. Ablasser, M. Schlee, S. Uematsu, A. Noronha, M. Manoharan, S. Akira, A. de Fougerolles, S. Endres, and G. Hartmann. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11(3):263-270 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. C. Bourquin, L. Schmidt, V. Hornung, C. Wurzenberger, D. Anz, N. Sandholzer, S. Schreiber, A. Voelkl, G. Hartmann, and S. Endres. Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T cell and IgG2a response. Blood 109:2953–2960 (2007).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to dedicate this article to Prof. Dr. John Samuel, who passed away far too soon. We thank him and Praveen Elamanchili from the Faculty of Pharmacy at the University of Alberta for their awesome support during the first experiments with CpG ODNs. We thank Nadja Sandholzer for expert technical assistance. This study was supported by grants BMBF Biofuture 0311896 to G.H, and from the Else-Kröner Fresenius Foundation and the German Research Foundation (DFG En 169/7-2 and GK 1202) to C.B. and S.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Coester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwiorek, K., Bourquin, C., Battiany, J. et al. Delivery by Cationic Gelatin Nanoparticles Strongly Increases the Immunostimulatory Effects of CpG Oligonucleotides. Pharm Res 25, 551–562 (2008). https://doi.org/10.1007/s11095-007-9410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9410-5

Key words

Navigation