Skip to main content

Advertisement

Log in

Application of SPLINDID, a Semiparametric, Model-Based Method for Pharmacogenomic Modeling of mRNA Dynamics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study was conducted to evaluate the applicability of SPLINDID, a semiparametric, model-based approach for obtaining transcription rates from the pharmacodynamics of mRNA expression.

Methods

A nonparametric exponential cubic spline function was used to obtain the transcription rate profile and the dynamics of mRNA expression was fitted using compartmental approaches. The transcription rate profile and mRNA degradation parameter was estimated using maximum likelihood method of ADAPT II software.

Results

Data sets containing noise for mRNA levels were simulated for four diverse pharmaceutically relevant conditions: receptor nonlinearity, a model in which the variant mRNAs differing in mRNA degradation constants were transcribed and for a minimal model of the cell cycle. SPLINDID was able to fit the data sets and accurately recapitulate the transcription rate profiles normalized to the mRNA degradation rate constants. The model was also challenged using experimental data containing time profiles of cell-cycle-regulated genes.

Conclusions

The SPLINDID approach is flexible in capturing complicated/complex mRNA profiles that are encountered in many experimental data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Bhasi, A. Forrest, and M. Ramanathan. SPLINDID, a semiparametric, model-based method for obtaining transcription rates and gene regulation parameters from genomic and proteomic expression profiles. Bioinformatics (2005).

  2. J. L. Hargrove F. H. Schmidt (1989) ArticleTitleThe role of mRNA and protein stability in gene expression FASEB J. 3 2360–2370 Occurrence Handle1:CAS:528:DyaK3cXitVWh Occurrence Handle2676679

    CAS  PubMed  Google Scholar 

  3. M. Ramanathan R. D. MacGregor C. A. Hunt (1993) ArticleTitlePredictions of effect for intracellular antisense oligodeoxyribonucleotides from a kinetic model Antisense Res. Dev. 3 3–18 Occurrence Handle1:CAS:528:DyaK2cXisFKrug%3D%3D Occurrence Handle8388278

    CAS  PubMed  Google Scholar 

  4. C. deBoor (1978) A Practical Guide to Splines Springer-Verlag New York, NY

    Google Scholar 

  5. L. L. Schumaker (1981) Spline Functions: Basic Theory Wiley New York, NY

    Google Scholar 

  6. D. Z. D'Argenio A. Schlumitzky (1997) Users Guide to Release 4: Adapt II Pharmacokinetic/Pharmacodynamic Systems Analysis Software, Biomedical Simulations Resource University of Southern California Los Angeles, CA

    Google Scholar 

  7. H. Akaike (1974) ArticleTitleA new look at the statistical model identification IEEE Trans. Automat. Contr. AC 19 716–723 Occurrence Handle10.1109/TAC.1974.1100705

    Article  Google Scholar 

  8. Y. N. Sun W. J. Jusko (1998) ArticleTitleTransit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics J. Pharm. Sci. 87 732–737 Occurrence Handle10.1021/js970414z Occurrence Handle1:CAS:528:DyaK1cXivVOlu7Y%3D Occurrence Handle9607951

    Article  CAS  PubMed  Google Scholar 

  9. A. Goldbeter (1991) ArticleTitleA minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase Proc. Natl. Acad. Sci. USA 88 9107–9111 Occurrence Handle1:CAS:528:DyaK3MXmslelsLg%3D Occurrence Handle1833774

    CAS  PubMed  Google Scholar 

  10. S. Stamm I. Ben-Ari Y. Rafalska Z. Tang D. Zhang T. A. Toiber H. Thanaraj (2005) ArticleTitleFunction of alternative splicing Gene 344 1–20 Occurrence Handle10.1016/j.gene.2004.10.022 Occurrence Handle1:CAS:528:DC%2BD2MXkvVSgtQ%3D%3D Occurrence Handle15656968

    Article  CAS  PubMed  Google Scholar 

  11. R. J. Cho M. J. Campbell E. A. Winzeler L. Steinmetz A. Conway L. Wodicka T. G. Wolfsberg A. E. Gabrielian D. Landsman D. J. Lockhart R. W. Davis (1998) ArticleTitleA genome-wide transcriptional analysis of the mitotic cell cycle Mol. Cell 2 65–73 Occurrence Handle10.1016/S1097-2765(00)80114-8 Occurrence Handle1:CAS:528:DyaK1cXltVektLw%3D Occurrence Handle9702192

    Article  CAS  PubMed  Google Scholar 

  12. P. T. Spellman G. Sherlock M. Q. Zhang V. R. Iyer K. Anders M. B. Eisen P. O. Brown D. Botstein B. Futcher (1998) ArticleTitleComprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Mol. Biol. Cell 9 3273–3297 Occurrence Handle1:CAS:528:DyaK1cXnvFOmt7Y%3D Occurrence Handle9843569

    CAS  PubMed  Google Scholar 

  13. F. M. Ausubel R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith K. Struhl (2005) Current Protocols in Molecular Biology Wiley-Interscience New York

    Google Scholar 

  14. S. Aktipis N. Panayotatos (1981) ArticleTitleA kinetic study on the mechanism of inhibition of RNA synthesis catalyzed by DNA-dependent RNA polymerase. Differences in inhibition by ethidium bromide, 3,8-diamino-6-ethylphenanthridinium bromide and actinomycin d Biochim. Biophys. Acta. 655 278–290 Occurrence Handle1:CAS:528:DyaL38XjtVOjtA%3D%3D Occurrence Handle7025910

    CAS  PubMed  Google Scholar 

  15. J. M. Glynn T. G. Cotter D. R. Green (1992) ArticleTitleApoptosis induced by Actinomycin D, Camptothecin or Aphidicolin can occur in all phases of the cell cycle Biochem. Soc. Trans. 20 84S Occurrence Handle1:CAS:528:DyaK38Xhs1GqsL0%3D Occurrence Handle1634006

    CAS  PubMed  Google Scholar 

  16. J. G. Wagner (1974) ArticleTitleApplication of the Wagner-Nelson absorption method to the two-compartment open model J. Pharmacokinet. Biopharm. 2 469–486 Occurrence Handle10.1007/BF01070942 Occurrence Handle1:STN:280:CSqC2s7nslQ%3D Occurrence Handle4461778

    Article  CAS  PubMed  Google Scholar 

  17. K. E. Fattinger D. Verotta (1995) ArticleTitleA nonparametric subject-specific population method for deconvolution: I. Description, internal validation, and real data examples J. Pharmacokinet. Biopharm. 23 581–610 Occurrence Handle10.1007/BF02353463 Occurrence Handle1:STN:280:BymA38fosVY%3D Occurrence Handle8733948

    Article  CAS  PubMed  Google Scholar 

  18. W. R. Gillespie P. Veng-Pedersen (1985) ArticleTitleA polyexponential deconvolution method. Evaluation of the “gastrointestinal bioavailability” and mean in vivo dissolution time of some ibuprofen dosage forms J. Pharmacokinet. Biopharm. 13 289–307 Occurrence Handle10.1007/BF01065657 Occurrence Handle1:CAS:528:DyaL28XhsFGku7Y%3D Occurrence Handle3841365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Kapoor Foundation, National Science Foundation (Research Grant 0234895) and the National Institutes of Health (P20-GM 067650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhasi, K., Forrest, A. & Ramanathan, M. Application of SPLINDID, a Semiparametric, Model-Based Method for Pharmacogenomic Modeling of mRNA Dynamics. Pharm Res 23, 663–669 (2006). https://doi.org/10.1007/s11095-006-9747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9747-1

Key Words

Navigation