Skip to main content
Log in

Pharmacokinetic Study of the New Diagnostic Radiopharmaceutical 99mTc-Pentaphosphonic Acid in Rats with an Experimental Bone-Fracture Model

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The pharmacokinetic properties of a bone-seeking radiopharmaceutical based on pentaphosphonic acid labeled with technetium-99m (99mTc-PPA) were investigated. The experiments were performed in healthy rats and in rats with a femoral bone-fracture (BF) model. The radiopharmaceutical was injected into a tail vein 14 days after the fracture. 99mTc-PPAshowed good stability in vivo because it accumulated in the thyroid less than unlabeled 99mTc. The maximum accumulation of 99mTc-PPA was found in bones tissue, where it reached 1.48 ±0.19% of injected dose per gram of tissue at 1 h after injection. The drug exhibited rapid blood clearance, showed minimum uptake into soft organs and tissues, and was excreted mainly via renal pathways. The presence of femoral BF significantly changed the biodistribution of 99mTc-PPAin soft organs and tissues. The 99mTc-PPAcontent in BF was 1.9 – 2.5 times higher than in healthy femur and 2 – 3 times higher than in skeleton. The concentration of 99mTc-PPAin other soft organs and tissues of rats with bone lesion was lower than in organs and tissues of healthy rats. The maximum BF-to-blood and BF-to-muscle ratios were 184.8 ±14.1 and 415.4 ±59.5, respectively, 3 h after injection. The results showed that 99mTc-PPAhad favorable properties for diagnosing bone-tissue metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Arsos, I. Venizelos, N. Karatzas, et al., Eur. J. Radiol., 43(1), 66 – 72 (2002).

    Article  PubMed  Google Scholar 

  2. L. Chavdarova, E. Piperkova, A. Tsonevska, et al., J. BUON, 11(4), 499 – 504 (2006).

    PubMed  CAS  Google Scholar 

  3. S. Banerjee, M. R. Pillai, and N. Ramamoorthy, Semin. Nucl. Med., 31(4), 260 – 277 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. T. Uematsu, S. Yuen, S. Yukisawa, et al., Am. J. Roentgenol., 184(4), 1266 – 1273 (2005).

    Article  Google Scholar 

  5. V. Kumar, D. Kumar, R. B. Howman-Giles, et al., Nucl. Med. Commun., 28(2), 101 – 107 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. M. Asikoglu and F. G. Durak, Appl. Radiat. Isot., 67(9), 1616 – 1621 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. M. Shigematsu, S. Shiomi, H. Iwao, et al., Ann. Nucl. Med., 16(1), 55 – 59 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. B. J. Fueger, M. Mitterhauser, W. Wadsak, et al., Nucl. Med. Commun., 25(4), 361 – 365 (2004).

    Article  PubMed  Google Scholar 

  9. I. Holen and R. E. Coleman, Curr. Pharm. Des., 16(11), 1262 – 1271 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. Rogers, Curr. Pharm. Des., 9(32), 2643 – 2658 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. G. Subramanian, J. G. McAfee, F. D. Thomas, et al., Radiology, 149(3), 823 – 828 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. C. Schuemichen, T. Krause, G. Umbach, et al., Nuklearmedizin, 27(1), 8 – 11 (1988).

    PubMed  CAS  Google Scholar 

  13. B. Stromqvist, J. Brismar, L. I. Hansson, et al., Clin. Orthop. Relat. Res., 182, 177 – 189 (1984).

    PubMed  Google Scholar 

  14. P. McKinstry, J. E. Schnitzer, T. R. Light, et al., Skeletal Radiol., 8(2), 115 – 121 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. O. F. Nicolay, J. D. Heeley, M. K. Jeffcoat, et al., Int. J. Radiat. Appl. Instrum. B., 15(2), 157 – 163 (1988).

    Article  CAS  Google Scholar 

  16. E. A. Carr, Jr., M. Carroll, M. Montes, et al., J. Nucl. Med., 26(4), 385 – 389 (1985).

    PubMed  CAS  Google Scholar 

  17. I. D. McCarthy and S. P. Hughes, Calcif. Tissue Int., 35(4 – 5), 508 – 511 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. S. A. Riggs, Jr., M. B. Wood, W. P. Cooney 3rd, et al., J. Orthop. Res., 1(3), 236 – 243 (1984).

    Article  PubMed  Google Scholar 

  19. T. T. Mottonen, P. Hannonen, J. Toivanen, et al., Scand. J. Rheumatol., 16(6), 421 – 427 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. M. Oka, T. T. Mottonen, and A. A. Rekonen, Scand. J. Rheumatol., 12(1), 46 – 48 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. J. Isacson, J. Rydberg, and L. A. Brostrom, Scand. J. Rheumatol., 17(5), 333 – 339 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. W. Y. Lin, C. P. Lin, S. J. Yeh, et al., Eur. J. Nucl. Med., 24(6), 590 – 595 (1997).

    PubMed  CAS  Google Scholar 

  23. J. G. McAfee, A. Singh, M. Roskopf, et al., Invest. Radiol., 18(5), 470 – 478 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. J. G. McAfee, F. D. Thomas, M. Roskopf, et al., Invest. Radiol., 19(6), 543 – 548 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 48, No. 6, pp. 3 – 8, June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petriev, V.M., Tishchenko, V.K., Siruk, O.V. et al. Pharmacokinetic Study of the New Diagnostic Radiopharmaceutical 99mTc-Pentaphosphonic Acid in Rats with an Experimental Bone-Fracture Model. Pharm Chem J 48, 357–362 (2014). https://doi.org/10.1007/s11094-014-1110-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-014-1110-y

Keywords

Navigation