Skip to main content

Advertisement

Log in

Solution Plasma Processing as an Environmentally Friendly Method for Low-Molecular Chitosan Production

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The use of low molecular weight chitosan in biomedicine and agriculture requires the development of new environmentally friendly technology for its production. Combination of physical and chemical factors when using plasma in contact with a liquid makes it possible to fast and efficiently carry out the depolymerization process of chitosan. In this paper, we consider the possibility of using an AC underwater discharge for this problem in comparison to DC atmospheric pressure glow discharge. The structural characteristics of the obtained chitosan were investigated using X-ray and IR analyzes. The results showed that the molecular weight of chitosan decreases significantly for 4 min of the plasma treatment. The analysis of fractionation and detection of reactive oxygen and nitrogen species was carried out. The contributions of physical and chemical factors to the process of chitosan depolymerization have been estimated. In addition, research was carried out on the phytostimulating and elicitor activities of the water-soluble fraction of chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmeed S, Ikram S (eds) Chitosan. Scrivener Publishing LLC, Beverly, USA, pp 185–232

    Google Scholar 

  2. Jeuniaux C, Almas K A, Baradarajan A, H. et al (1986) Chitosan as a tool for the purification of waters. In: Muzzarelli R, Jeuniaux C, Gooday G W (eds) Chitin in nature and technology. Springer, Boston, MA, pp. 551–570 https://doi.org/10.1007/978-1-4613-2167-5_66

  3. Orzali L, Corsi B, Forni C, Riccioni L, (2017) Chitosan in agriculture: a new challenge for managing plant disease. In: Shalaby E (ed) Biological activities and application of marine polysaccharides. InTech, Rijeka, pp. 17–36

  4. Kananont N, Pichyangkura R, Chanprame S et al (2010) Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci Hortic 124:239–247. https://doi.org/10.1016/j.scienta.2009.11.019

    Article  CAS  Google Scholar 

  5. Vasyukova NI, Zinov’Eva SV, Il’Inskaya LI et al (2001) Modulation of plant resistance to diseases by water-soluble chitosan. Appl Biochem Microbiol 37:103–109. https://doi.org/10.1023/A:1002865029994

    Article  CAS  Google Scholar 

  6. Vasyukova NI, Gerasimova NG, Chalenko GI, Ozeretskovskaya OL (2012) Elicitor activity of chitosan and arachidonic acid: Their similarity and distinction. Appl Biochem Microbiol 48:95–101. https://doi.org/10.1134/S0003683812010188

    Article  CAS  Google Scholar 

  7. Kulikov SN, Chirkov SN, Il’ina A V, et al (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl Biochem Microbiol 42:200–203. https://doi.org/10.1134/S0003683806020165

    Article  CAS  Google Scholar 

  8. Davydova VN, Nagorskaya VP, Gorbach VI et al (2011) Chitosan antiviral activity: dependence on structure and depolymerization method. Appl Biochem Microbiol 47:103–108. https://doi.org/10.1134/S0003683811010042

    Article  CAS  Google Scholar 

  9. Buchovec I, Lukšienė Ž (2015) Novel approach to control microbial contamination of germinated wheat sprouts: photoactivatedchlorophillin-chitosan complex. Int J Food Process Technol 2:26–30

    Google Scholar 

  10. Titov V, Nikitin D, Naumova I et al (2020) Dual-mode solution plasma processing for the production of chitosan/Ag composites with the antibacterial effect. Materials 13:4821. https://doi.org/10.3390/ma13214821

    Article  CAS  PubMed Central  Google Scholar 

  11. Tian F, Liu Y, Hu K, Zhao B (2003) The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci 38:4709–4712

    Article  CAS  Google Scholar 

  12. Mao S, Shuai X, Unger F et al (2004) The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharmaceut 281:45–54. https://doi.org/10.1016/j.ijpharm.2004.05.019

    Article  CAS  Google Scholar 

  13. Chattopadhyay DP, Inamdar MS (2010) Aqueous behaviour of chitosan. Int J Polym Sci 2010:939536. https://doi.org/10.1155/2010/939536

    Article  CAS  Google Scholar 

  14. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416. https://doi.org/10.3390/ma4081399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma F, Wang Z, Zhao H, Tian S (2012) Plasma depolymerization of chitosan in the presence of hydrogen peroxide. Int J Mol Sci 13:7788–7797. https://doi.org/10.3390/ijms13067788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco A, García-Abuín A, Gómez-Díaz D, Navaza JM (2013) Physicochemical characterization of chitosan derivatives. CyTA-J Food 11:190–197. https://doi.org/10.1080/19476337.2012.722565

    Article  CAS  Google Scholar 

  17. Nguyen NT, Hoang DQ, Nguyen ND et al (2017) Preparation, characterization, and antioxidant activity of water-soluble oligochitosan. Green Process Synthesis 6:461–468. https://doi.org/10.1515/gps-2016-0126

    Article  CAS  Google Scholar 

  18. Tishchenko G, Šimůnek J, Brus J et al (2011) Low-molecular-weight chitosans: preparation and characterization. Carbohydr Polym 86:1077–1081. https://doi.org/10.1016/j.carbpol.2011.04.073

    Article  CAS  Google Scholar 

  19. Xie H, Jia Z, Huang J, Zhang C (2011) Preparation of low molecular weight chitosan by complex enzymes hydrolysis. Int J Chem 3:180–186

    CAS  Google Scholar 

  20. Poshina DN, Raik SV, Poshin AN, Skorik YA (2018) Accessibility of chitin and chitosan in enzymatic hydrolysis: a review. Polym Degrad Stab 156:269–278. https://doi.org/10.1016/j.polymdegradstab.2018.09.005

    Article  CAS  Google Scholar 

  21. Gonçalves C, Ferreira N, Lourenço L (2021) Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers 13:2466. https://doi.org/10.3390/polym13152466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wasikiewicz JM, Yoshii F, Nagasawa N et al (2005) Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiat Phys Chem 73:287–295

    Article  CAS  Google Scholar 

  23. Luo WB, Han Z, Zeng XA et al (2010) Study on the degradation of chitosan by pulsed electric fields treatment. Innov Food Sci Emerg Technol 11:587–591. https://doi.org/10.1016/j.ifset.2010.04.002

    Article  CAS  Google Scholar 

  24. Zawadzki J, Kaczmarek H (2010) Thermal treatment of chitosan in various conditions. Carbohydr Polym 80:394–400. https://doi.org/10.1016/j.carbpol.2009.11.037

    Article  CAS  Google Scholar 

  25. Prasertsung I, Damrongsakkul S, Terashima C et al (2012) Preparation of low molecular weight chitosan using solution plasma system. Carbohydr Polym 87:2745–2749. https://doi.org/10.1016/j.carbpol.2011.11.055

    Article  CAS  Google Scholar 

  26. Alves HJ, Vieceli M, Alves C et al (2018) Chitosan depolymerization and nanochitosan production using a single physical procedure. J Polym Environ 26:3913–3923. https://doi.org/10.1007/s10924-018-1267-7

    Article  CAS  Google Scholar 

  27. Prasertsung I, Damrongsakkul S, Saito N (2013) Degradation of β-chitosan by solution plasma process (SPP). Polym Degrad Stab 98:2089–2093. https://doi.org/10.1016/j.polymdegradstab.2013.07.001

    Article  CAS  Google Scholar 

  28. Tantiplapol T, Singsawat Y, Narongsil N et al (2015) Influences of solution plasma conditions on degradation rate and properties of chitosan. Innov Food Sci Emerg Technol 32:116–120. https://doi.org/10.1016/j.ifset.2015.09.014

    Article  CAS  Google Scholar 

  29. Titov VA, Lipatova IM, Mezina EA, Kuz’Micheva L A, (2016) Plasma-chemical destruction and modification of chitosan in solution. High Energy Chem 50:411–415. https://doi.org/10.1134/S0018143916050167

    Article  CAS  Google Scholar 

  30. Ma F, Li P, Zhang B et al (2017) Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan. Int J Biol Macromol 98:201–207. https://doi.org/10.1016/j.ijbiomac.2017.01.049

    Article  CAS  PubMed  Google Scholar 

  31. Davoodbasha M, Lee SY, Kim JW (2018) Solution plasma mediated formation of low molecular weight chitosan and its application as a biomaterial. Int J Biolog Macromol 118:1511–1517. https://doi.org/10.1016/j.ijbiomac.2018.06.168

    Article  CAS  Google Scholar 

  32. Vasilieva TM, Naumova IK, Galkina OV et al (2020) Electron-beam plasma for biomass modification. IEEE Trans Plasma Sci 48:1035–1041. https://doi.org/10.1109/TPS.2020.2980200

    Article  CAS  Google Scholar 

  33. Li Y, Yang Y, Huang Z et al (2021) Preparation of low molecular chitosan by microwave-induced plasma desorption/ionization technology. Int J Biolog Macromol 187:441–450. https://doi.org/10.1016/j.ijbiomac.2021.07.122

    Article  CAS  Google Scholar 

  34. Vasilieva T, Goñi O, Quille P (2021) Chitosan plasma chemical processing in beam-plasma reactors as a way of environmentally friendly phytostimulants production. Processes 9:103. https://doi.org/10.3390/pr9010103

    Article  CAS  Google Scholar 

  35. Wang D, Song R, Liu Y et al (2021) Simultaneous production of low molecular weight chitosan and reducing sugar via high molecular chitosan depolymerization by surface discharge plasma. J Clean Prod 316:128295. https://doi.org/10.1016/j.jclepro.2021.128295

    Article  CAS  Google Scholar 

  36. Du XD, Vuong XB (2019) Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv Mater Sci Eng 2019:8781013. https://doi.org/10.1155/2019/8781013

    Article  CAS  Google Scholar 

  37. Ma F, Zhang S, Li P et al (2021) Investigation on the role of the free radicals and the controlled degradation of chitosan under solution plasma process based on radical scavengers. Carbohydr Polym 257:117567. https://doi.org/10.1016/j.carbpol.2020.117567

    Article  CAS  PubMed  Google Scholar 

  38. Khlyustova A, Grosheva A, Sirotkin N, Panova D (2019) Catalytic/inhibitory effect of the joint presence of two dyes on its destruction by underwater plasma processes: a tool for optimization parameters of treatment. SN Appl Sci 1:1465. https://doi.org/10.1007/s42452-019-1516-y

    Article  CAS  Google Scholar 

  39. Domszy JG, Roberts GA (1985) Evaluation of infrared spectroscopic techniques for analysing chitosan. Macromol Chem Phys 186:1671–1677. https://doi.org/10.1002/macp.1985.021860815

    Article  CAS  Google Scholar 

  40. Khan TA, Peh KK, Ch’ng H S, (2002) Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharm Sci 5:205–212

    CAS  PubMed  Google Scholar 

  41. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125. https://doi.org/10.1088/0963-0252/12/2/301

    Article  CAS  Google Scholar 

  42. Abdel-Fattah E, Bazavan M, Shindo H (2015) Temperature measurements in microwave argon plasma source by using overlapped molecular emission spectra. Phys Plasmas 22:093509. https://doi.org/10.1063/1.4930133

    Article  CAS  Google Scholar 

  43. Wang W, Bo S, Li S, Qin W (1991) Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int J Biolog Macromol 13:281–285. https://doi.org/10.1016/0141-8130(91)90027-R

    Article  CAS  Google Scholar 

  44. Nikitin D, Choukourov A, Titov V et al (2016) In situ coupling of chitosan onto polypropylene foils by an atmospheric pressure air glow discharge with a liquid cathode. Carbohydr Polym 154:30–39. https://doi.org/10.1016/j.carbpol.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  45. Chang KLB, Tai MC, Cheng FH (2001) Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agric Food Chem 49:4845–4851. https://doi.org/10.1021/jf001469g

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Cai J, Fan L (2008) Effect of sonolysis on kinetics and physicochemical properties of treated chitosan. J Appl Polym Sci 109:2417–2425. https://doi.org/10.1002/app.28339

    Article  CAS  Google Scholar 

  47. Popa-Nita S, Lucas JM, Ladaviere C et al (2009) Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromol 10:1203–1211. https://doi.org/10.1021/bm8014472

    Article  CAS  Google Scholar 

  48. Bhardwaj S, Bhardwaj NK, Negi YS (2020) Effect of degree of deacetylation of chitosan on its performance as surface application chemical for paper-based packaging. Cellulose 27:5337–5352. https://doi.org/10.1007/s10570-020-03134-5

    Article  CAS  Google Scholar 

  49. Ogawa K, Yui T (1994) Effect of explosion on the crystalline polymorphism of chitin and chitosan. Biosci Biotechnol Biochem 58:968–969. https://doi.org/10.1271/bbb.58.968

    Article  CAS  Google Scholar 

  50. Samuels RJ (1981) Solid state characterization of the structure of chitosan films. J Polym Sci Polym Phys Ed 19:1081–1105. https://doi.org/10.1002/pol.1981.180190706

    Article  CAS  Google Scholar 

  51. Torrado S, Torrado S (2002) Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem Pharmaceut Bull 50:567–570. https://doi.org/10.1248/cpb.50.567

    Article  CAS  Google Scholar 

  52. Herdyastuti N, Cahyaningrum SE (2017) Analysis of N-acetylglucosamine from enzymatic degradation of amorphous chitin. Rayasan J Chem 10:226–233. https://doi.org/10.7327/RJC.2017.1011582

    Article  CAS  Google Scholar 

  53. Ali AMA, Khames A, Alrobaian MM et al (2018) Glucosamine-paracetamol spray-dried solid dispersions with maximized intrinsic dissolution rate, bioavailability and decreased levels of in vivo toxic metabolites. Drug Des Devel Ther 12:3071. https://doi.org/10.2147/DDDT.S176099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suitcharit C, Awae F, Sengmama, et al (2011) Preparation of depolymerized chitosan and its effect on dyeability of Mangosteen dye. Chiang Mai J Sci 38:473–484

    CAS  Google Scholar 

  55. Wen Y, Shen C, Ni Y et al (2012) Glow discharge plasma in water: a green approach to enhancing ability of chitosan for dye removal. J Hazard Mater 201:162–169

    Article  Google Scholar 

  56. Rinaudo M, Pavlov G, Desbrieres J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polym 40:7029–7032. https://doi.org/10.1016/S0032-3861(99)00056-7

    Article  CAS  Google Scholar 

  57. Lu S, Song X, Cao D et al (2004) Preparation of water-soluble chitosan. J Appl Polym Sci 91:3497–3503. https://doi.org/10.1002/app.13537

    Article  CAS  Google Scholar 

  58. Janik I, Kasprzak E, Al-Zier A, Rosiak JM (2003) Radiation crosslinking and scission parameters for poly (vinyl methyl ether) in aqueous solution. Nucl Instr Methods Phys Res B Beam Interact Mater At 208:374–379. https://doi.org/10.1016/S0168-583X(03)00897-8

    Article  CAS  Google Scholar 

  59. Khlyustova A, Sirotkin N, Evdokimova O et al (2018) Efficacy of underwater AC diaphragm discharge in generation of reactive species in aqueous solutions. J Electrost 96:76–84. https://doi.org/10.1016/j.elstat.2018.10.002

    Article  CAS  Google Scholar 

  60. Sirotkin NA, Titov VA (2018) Experimental study of heating of a liquid cathode and transfer of its components into the gas phase under the action of a DC discharge. Plasma Phys Rep 44:462–467. https://doi.org/10.1134/S1063780X18040086

    Article  CAS  Google Scholar 

  61. Buogo S, Plocek J, Vokurka K (2009) Efficiency of energy conversion in underwater spark discharges and associated bubble oscillations: experimental results. Acta Acust United Acust 95:46–59. https://doi.org/10.3813/AAA.918126

    Article  Google Scholar 

  62. Izdebski T, Dors M, Mizeraczyk J (2014) Energy emissions of spark discharge under water. Eur Chem Bull 3:811–814

    CAS  Google Scholar 

  63. Tanioka S, Matsui Y, Irie T et al (1996) Oxidative depolymerization of chitosan by hydroxyl radical. Biosci Biotechnol Biochem 60:2001–2004. https://doi.org/10.1271/bbb.60.2001

    Article  CAS  Google Scholar 

  64. Hameed A, Sheikh MA, Hameed A, Farooq T, Basra SMA, Jamil A (2013) Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica 57:97–110

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Russian Foundation for Basic Research (Project No 20-02-00501). Authors would like to thank Dr. N. Fomina for performing the XRD analysis and Dr. Yu. Fadeeva for conducting of FTIR measurements at the center of joint use of scientific equipment (the Upper Volga Regional Center for Physical-Chemical Research, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khlyustova.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlyustova, A., Sirotkin, N., Naumova, I. et al. Solution Plasma Processing as an Environmentally Friendly Method for Low-Molecular Chitosan Production. Plasma Chem Plasma Process 42, 587–603 (2022). https://doi.org/10.1007/s11090-022-10237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10237-3

Keywords

Navigation