Skip to main content
Log in

Phase-Resolved Measurement of Atmospheric-Pressure Radio-Frequency Pulsed Discharges in Ar/CH4/CO2 Mixture

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In order to comprehensively investigate the discharge characteristics of an atmospheric-pressure radio-frequency (RF) pulsed discharge in Ar/CH4/CO2, a phase-resolved measurement is given in this paper. Firstly, the discharge characteristics of RF plasma in a gas mixture of Ar, CO2 and CH4 are investigated under different parameters. It is found peak power is more efficient than duty cycle in increasing the discharge area. Besides, a phase-resolved morphology of RF plasma is given. The discharge in the positive cycle is longer in length and stronger in emission intensity than in the negative cycle. Secondly, different activation paths of species have been obtained by using phase-resolved optical emission spectroscopy. Ar species is mainly activated by electron collision effect, while CH and C2 are mainly activated by Ar metastable species. Finally, detailed electron kinetics is analyzed. The results show that most energy is transferred to the vibrational excitation compared to elastic activation, electronic excitation, and ionization under different ratios of CO2 and CH4 to Ar. Besides, under a higher ratio of CH4 and CO2 to Ar, the generating rate of species and power loss rate are higher. It proves that higher fraction of CO2 and CH4 is better for the conversion rate and energy efficiency under RF discharge in theory, which guides the reforming of CH4 and CO2 in RF discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Energy Environ Sci 5:7281–7305

    Article  CAS  Google Scholar 

  2. Wang XL, Gao Y, Zhang S, Sun H, Li J, Shao T (2019) Appl Energy 243:132–144

    Article  CAS  Google Scholar 

  3. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007

    Article  CAS  Google Scholar 

  4. Nielsen JR, Dibkjaer I, Christiansen LJ (1992) Chemical reactor technology for environmentally safe reactors and products. NATO ASI, NATO

  5. Shao T, Wang RX, Zhang C, Yan P (2018) High Volt 3:14

    Article  Google Scholar 

  6. Aziznia A, Bozorgzadeh HR, Seyed-Matin N, Baghalha M, Mohamadalizadeh A (2012) J Nat Gas Chem 21:466–475

    Article  CAS  Google Scholar 

  7. Yao SL, Okumoto M, Nakayama A, Suzuki E (2001) Energy Fuels 15:1295–1299

    Article  CAS  Google Scholar 

  8. Okkan A, Dufour T, Arnoult G, De Keyzer P, Bogaerts A, Reniers F (2015) J CO2 Util 9:78–81

    Google Scholar 

  9. Zhang X, Cha MS (2013) J Phys D Appl Phys 46:415205

    Article  CAS  Google Scholar 

  10. Zhu B, Li X, Liu J, Zhu A (2012) Int J Hydrogen Energy 37:16916–16924

    Article  CAS  Google Scholar 

  11. Scapinello M, Martini LM, Dilecce G, Tosi P (2016) J Phys D Appl Phys 49:75602

    Article  CAS  Google Scholar 

  12. Zhu F, Zhang H, Han X, Yan J, Ni M, Li X, Tu X (2017) Fuel 199:430–437

    Article  CAS  Google Scholar 

  13. Xia Y, Lu N, Wang B, Li J, Shang K, Jiang N, Wu Y (2017) Int J Hydrogen Energy 42:22776–22785

    Article  CAS  Google Scholar 

  14. Savinov SY, Lee H, Song HK, Na B-K (1999) Ind Eng Chem Res 38:2540–2547

    Article  CAS  Google Scholar 

  15. Zhang K, Zhang S, Gao Y, Sun H, Yan P, Shao T (2019) Proc Chin Soc Electr Eng 39:3280–3289

    Google Scholar 

  16. Park J, Henins I, Herrmann HW, Selwyn GS (2001) J Appl Phys 89:15–19

    Article  CAS  Google Scholar 

  17. Yang XW, Moravej M, Nowling GR, Chang JP, Hicks RF (2005) IEEE Trans Plasma Sci 33:294–295

    Article  Google Scholar 

  18. Capezzuto P, Cramarossa F, d’Agostino R, Molinari E (1977) Rev Phys Appl 12:1205–1208

    Article  CAS  Google Scholar 

  19. Yao SL, Ouyang F, Nakayama A, Suzuki E, Okumoto M, Mizuno A (2000) Energy Fuels 14:910–914

    Article  CAS  Google Scholar 

  20. Okumoto M, Kim HH, Takashima K, Katsura S, Mizuno A (2001) IEEE Trans Ind Appl 37:1618–1624

    Article  CAS  Google Scholar 

  21. Luo LX, Wu WD, Sun WG, Tang YJ, Zhu YH (2007) Chin J Vac Sci Technol 27:203–207

    CAS  Google Scholar 

  22. Yuan QH, Ren P, Zhou YJ, Yin GQ, Dong CZ (2019) Plasma Sci Technol 21:025402

    Article  CAS  Google Scholar 

  23. Iza F, Lee JK, Kong MG (2007) Phys Rev Lett 99:075004

    Article  CAS  PubMed  Google Scholar 

  24. Levaton J, Klein AN, Binder C (2018) Plasma Chem Plasma Process 38:1259–1272

    Article  CAS  Google Scholar 

  25. Park J, Henins I, Herrmann HW, Selwyn GS, Hicks RF (2001) J Appl Phys 89:20–28

    Article  CAS  Google Scholar 

  26. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675

    Article  CAS  Google Scholar 

  27. Wu AJ, Yan JH, Zhang H, Zhang M, Du CM, Li XD (2014) Int J Hydrogen Energy 39:17656–17670

    Article  CAS  Google Scholar 

  28. Wang Q, Yan BH, Jin Y, Cheng Y (2009) Plasma Chem Plasma Process 29:217–228

    Article  CAS  Google Scholar 

  29. Li SZ, Wu Q, Wang DZ, Uhm HS (2011) Phys Lett A 375:598–600

    Article  CAS  Google Scholar 

  30. Moravej M, Yang X, Hicks RF (2006) J Appl Phys 99:093305

    Article  CAS  Google Scholar 

  31. Pinhão NR, Janeco A, Branco JB (2011) Plasma Chem Plasma Process 31:427–439

    Article  CAS  Google Scholar 

  32. O’Connell D, Gans T, Vender D, Czarnetzki U, Boswell R (2007) Phys Plasmas 14:034505

    Article  CAS  Google Scholar 

  33. Vender D, Boswell RW (1992) J Vac Sci Technol A 10:1331–1338

    Article  Google Scholar 

  34. Wu SQ, Liu XY, Mao WH, Chen W, Liu C, Zhang CH (2018) J Appl Phys 124:243302

    Article  CAS  Google Scholar 

  35. Sigeneger F, Schäfer J, Foest R, Loffhagen D (2019) Plasma Sources Sci Technol 28:055004

    Article  CAS  Google Scholar 

  36. Schulze J, Ganz T, O’Connell D, Czarnetzki U, Ellingboe AR, Turner MM (2007) J Phys D Appl Phys 40:7008–7018

    Article  CAS  Google Scholar 

  37. Gibson AR, Donkό Z, Alelyani L, Bischoff L, Hübner G, Bredin J, Doyle S, Korolov I, Niemi K, Mussenbrock T (2019) Plasma Sources Sci Technol 28:01LT01

    Article  CAS  Google Scholar 

  38. Bleekrode R, Nieuwpoort WC (1965) J Chem Phys 43:3680–3687

    Article  CAS  Google Scholar 

  39. Parigger C, Plemmons DH, Hornkohl JO, Lewis JWL (1994) J Quant Spectrosc Radiat Transf 52:707–711

    Article  CAS  Google Scholar 

  40. Kim DB, Jung H, Gweon B, Moon SY, Rhee JK, Choe W (2011) Phys Plasmas 18:043503

    Article  CAS  Google Scholar 

  41. Garofano V, Montpetit F, Glad X, Gangwar RK, Stafford L (2019) J Vac Sci Technol A 37:021301

    Article  CAS  Google Scholar 

  42. Crintea DL, Luggenhölscher D, Kadetov VA, Isenberg Ch, Czarnetzki U (2008) J Phys D Appl Phys 41:082003

    Article  CAS  Google Scholar 

  43. Floettmann K (2015) Phys Rev Accel Beams 18:064801

    Article  CAS  Google Scholar 

  44. Kolts JH, Setser DW (1978) J Chem Phys 68:4848–4859

    Article  CAS  Google Scholar 

  45. Velazco JE, Kolts JH, Setser DW (1978) J Chem Phys 69:4357–4373

    Article  CAS  Google Scholar 

  46. Bogaerts A, Berthelot A, Heijkers S, Kolev S, Snoeckx R, Sun S, Trenchev G, Laer KV, Wang W (2017) Plasma Sources Sci Technol 26:063001

    Article  CAS  Google Scholar 

  47. Nguyen T, Hernandez E, Donnelly VM, Economou DJ (2018) J Vac Sci Technol A 36:04F406

    Article  CAS  Google Scholar 

  48. Stanfield SA, Menart J (2009) AIAA J 47:1107–1115

    Article  Google Scholar 

  49. Luque J, Crosley DR (1999) Lifbase, database, spectral simulation for OH A-X, OD A-X, NO A-X, B-X D-X CH A-X, B-X, C-X CN B-X, SiH A-X, CF A-X (Version 1.5). SRI International, Menlo Park

    Google Scholar 

  50. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  51. Yamabe B (1983) Phelps. Phys Rev 27:1345–1352

    Article  CAS  Google Scholar 

  52. PHELPS database (2013) https://www.lxcat.net. Accessed 4 June 2018

  53. Janeco A, Pinhão NR, Guerra V (2015) J Phys Chem C 119:109–120

    Article  CAS  Google Scholar 

  54. Shao T, Long KH, Zhang C, Yan P, Zhang SC, Pan RZ (2008) J Phys D Appl Phys 46:215203

    Google Scholar 

  55. Cascella M, Curik R, Gianturco FA (2001) J Phys B At Mol Opt 34:705–723

    Article  CAS  Google Scholar 

  56. Pietanza LD, Colonna G, D’Ammando G, Laricchiuta A, Capetelli M (2016) Chem Phys 468:44–52

    Article  CAS  Google Scholar 

  57. Lieberman MA, Lichtenberg AJ (2015) Principles of plasma discharges and materials processing. Wiley, Hoboken

    Google Scholar 

  58. Zhang DY, Huang Q, Devid EJ, Schuler E, Shiju NR, Rothenberg G, Rooij GV, Yang RL, Liu KZ, Kleyn AW (2018) J Phys Chem C 122:19338–19347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 51637010 and 51807190), DNL Cooperation Fund, CAS (DNL180204), and the Royal Society – Newton Advanced Fellowship, UK (Grant Number NA140303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bangdou Huang or Cheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Huang, B., Zhu, W. et al. Phase-Resolved Measurement of Atmospheric-Pressure Radio-Frequency Pulsed Discharges in Ar/CH4/CO2 Mixture. Plasma Chem Plasma Process 40, 937–953 (2020). https://doi.org/10.1007/s11090-020-10071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10071-5

Keywords

Navigation