Skip to main content
Log in

Thermal Conductivity of Nanocomposites Based in High Density Polyethylene and Surface Modified Hexagonal Boron Nitride via Cold Ethylene Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride nanoparticles (hBN) were surface modified by treatment with cold ethylene plasma. During this treatment, an ultrathin plasma polymerized polyethylene layer is deposited on the surface of the hBN nanoparticles. Before and after the plasma treatment, the nanoparticles were characterized by infra-red spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM) and X-ray diffraction. Untreated and plasma treated nanoparticles were incorporated via melt mixing into high density polyethylene (HDPE), at different concentrations. Dispersion of hBN within the polymer and the polymer-particle interaction were studied by TEM. Thermal conductivity of the prepared nanocomposites was determined by modulated differential scanning calorimetry. In general, the thermal conductivity of all HDPE–hBN prepared nanocomposites was higher than that of pure HDPE. However, the higher conductivity values, 97 and 114% higher than that of pure HDPE, were obtained in plasma treated samples (treated at 100 W for 5 min) with 8 and 15 wt% loading of hBN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu M, Yu D, Wei J (2007) Polym Test 26(3):333–337

    Article  CAS  Google Scholar 

  2. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  3. Zhang X, Shen L, Wu H, Guo S (2013) Compos Sci Technol 89:24–28

    Article  CAS  Google Scholar 

  4. Zhou W, Qi S, An Q, Zhao H, Liu N (2007) Mater Res Bull 42(10):1863–1873

    Article  CAS  Google Scholar 

  5. Lin Z, Liu Y, Raghavan S, Moon K, Sitaraman SK, Wong C (2013) Appl Mater Interfaces 5(13):7633–7640

    Article  CAS  Google Scholar 

  6. Ma X, Lee NH, Oh HJ, Jung SC, Lee WJ, Kim SJ (2011) J Cryst Growth 316(1):185–190

    Article  CAS  Google Scholar 

  7. Zheng JC, Zhang L, Kretinin AV, Morozov SV, Wang YB, Wang T, Li X, Ren F, Zhang J, Lu CY, Chen JC, Lu M, Wang HQ, Geim AK, Novoselov KS (2016) 2D Mater 3(1):011004

    Article  Google Scholar 

  8. Wu J, Wang B, Wei Y, Yang R, Dresselhaus M (2013) Mater Res Lett 1(4):200–206

    Article  CAS  Google Scholar 

  9. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Compos B Eng 39(6):933–961

    Article  Google Scholar 

  10. Harrison C, Weaver S, Bertelsen C, Burgett E, Hertel N, Grulke E (2008) J Appl Polym Sci 109(4):2529–2538

    Article  CAS  Google Scholar 

  11. Hod O (2012) J Chem Theory Comput 8(4):1360–1369

    Article  CAS  Google Scholar 

  12. Sentmanat M, Hatzikiriakos SG (2004) Rheol Acta 43(6):624–633

    Article  CAS  Google Scholar 

  13. González J, Albano C, Ichazo M, Díaz B (2002) Eur Polym J 38(12):2465–2475

    Article  Google Scholar 

  14. Barman A, Shrivastava NK, Khatua BB, Ray BC (2015) Polym Compos 36(12):2157–2166

    Article  CAS  Google Scholar 

  15. George TS, Krishnan A, Joseph N, Anjana R, George KE (2012) Polym Compos 33(9):1465–1472

    Article  CAS  Google Scholar 

  16. Neira MG, Borjas JJ, Hernández E, Hernández CG, Narro RI, Hernández JF, Ramos LF (2015) Plasma Process Polym 12(5):477–485

    Article  Google Scholar 

  17. Neira MG, Ramos LF, Hernández E, Ponce A, Solís SG, Sánchez S, Bartolo P, González VA (2011) Plasma Process Polym 8(9):842–849

    Article  Google Scholar 

  18. Pakdel A, Bando Y, Golberg D (2014) ACS Nano 8(10):10631–10639

    Article  CAS  Google Scholar 

  19. Sevak Singh R, Tay RY, Chow WL, Tsang SH, Mallick G, Teo EHT (2014) Appl Phys Lett 104(16):163101

    Article  Google Scholar 

  20. Ikuno T, Sainsbury T, Okawa D, Fréchet JMJ, Zettl A (2007) Solid State Commun 142(11):643–646

    Article  CAS  Google Scholar 

  21. ASTM E1952 (2011) Standard test method for thermal conductivity and thermal diffusivity by modulated temperature differential scanning calorimetry. ASTM

  22. Russo C, Stanzione F, Tregrossi A, Ciajolo A (2014) Carbon 74:127–138

    Article  CAS  Google Scholar 

  23. Baraton MI, Merle T, Quintard P, Lorenzelli V (1993) Langmuir 9(6):1486–1491

    Article  CAS  Google Scholar 

  24. Yasuda H, Yasuda T (2000) J Polym Sci A Polym Chem 38(6):943–953

    Article  CAS  Google Scholar 

  25. Cho H-B, Tokoi Y, Tanaka S, Suematsu H, Suzuki T, Jiang W, Niihara K, Nakayama T (2011) Compos Sci Technol 71(8):1046–1052

    Article  CAS  Google Scholar 

  26. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Nano Lett 10(10):4134–4139

    Article  CAS  Google Scholar 

  27. Lin Z, Mcnamara A, Liu Y, Moon KS, Wong CP (2014) Compos Sci Tech 90:123–128

    Article  CAS  Google Scholar 

  28. Briggs D, Fairley (2002) Surf Interface Anal 33(3):283–290

  29. Briggs D, Beamson G (1992) Anal Chem 64(15):1729–1736

    Article  CAS  Google Scholar 

  30. Dementjev AP, Graaf A, Sanden MCM, Maslakov KI, Naumkin AV, Serov AA (2000) Diam Relat Mater 9(11):1904–1907

    Article  CAS  Google Scholar 

  31. Bhattacharyya S, Cardinaud C, Turban G (1998) J Appl Phys 83(8):4491–4500

    Article  CAS  Google Scholar 

  32. Bhattacharyya S, Hong J, Turban G (1998) J Appl Phys 83(8):3917–3919

    Article  CAS  Google Scholar 

  33. Yuan C, Duan B, Li L, Xie B, Huang M, Luo X (2015) ACS Appl Mater Interfaces 7(23):13000–13006

    Article  CAS  Google Scholar 

  34. Sichel EK, Miller RE, Abrahams MS, Buiocchi CJ (1976) Phys Rev B 13(10):4607–4611

    Article  CAS  Google Scholar 

  35. Simpson A, Stuckes AD (1971) J Phys C: Solid State Phys 4(13):1710–1718

    Article  CAS  Google Scholar 

  36. Ashton TS, Moore AL (2015) J Mater Sci 50(18):6220–6226

    Article  CAS  Google Scholar 

  37. Lin Z, Mcnamara A, Liu Y, Moon K, Wong CP (2014) Compos Sci Technol 90:123–128

    Article  CAS  Google Scholar 

  38. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013). In: IEEE international conference on solid dielectrics, pp~678–681

  39. Luo T, Lloyd JR (2012) Adv Funct Mater 22(12):2495–2502

    Article  CAS  Google Scholar 

  40. Agarwal S, Khan MMK, Gupta RK (2008) Polym Eng Sci 28(12):2474–2481

    Article  Google Scholar 

  41. Zhou W, Qi S, An Q, Zhao H, Liu N (2007) Mater Res Bull 42(10):1863–1873

    Article  CAS  Google Scholar 

  42. Cheewawuttipong W, Fuoka D, Tanoue S, Uematsu H, Iemoto Y (2013) Energy Proc 34:808–817

    Article  CAS  Google Scholar 

  43. Covarrubias-Gordillo CA, Soriano-Corral F, Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Hernández-Gámez JF, De León-Martínez PA (2017) J Nanomater 2017:1–10

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Javier Borjas) thanks National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología-CONACyT) for granting him a scholarship to carry his PhD studies. Also, the authors gratefully acknowledge the financial support of CONACyT through Projects CB-222805 and LN-232753. The support of CONACyT through Grant 280425 (LANI-Auto) is also greatly appreciated. The authors also wish to thank Anabel Ochoa, Blanca Huerta, Elda Hurtado, Guadalupe Méndez, Irma Solís, Miriam Lozano, Rosario Rangel, Seyma De León, Angel Cepeda, Alejandro Espinosa, Daniel Alvarado, Enrique Reyes, Francisco Zendejo, Jesús Rodríguez, Marcelo Ulloa and Rodrigo Cedillo for their technical and informatics support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Neira-Velázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borjas-Ramos, J.J., Ramos-de-Valle, L.F., Neira-Velázquez, M.G. et al. Thermal Conductivity of Nanocomposites Based in High Density Polyethylene and Surface Modified Hexagonal Boron Nitride via Cold Ethylene Plasma. Plasma Chem Plasma Process 38, 429–441 (2018). https://doi.org/10.1007/s11090-017-9864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9864-0

Keywords

Navigation