Skip to main content
Log in

Schlieren High-Speed Imaging of a Nanosecond Pulsed Atmospheric Pressure Non-equilibrium Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The fluid-dynamic characterization by means of Schlieren high-speed imaging of the effluent region of a single electrode plasma jet is presented. The plasma source is powered by a high-voltage generator producing pulses with nanosecond rise time. Time evolution of fluctuations generated in a free flow regime and when the jet is impinging on substrates of different geometries (plain substrates, Petri dishes, etc.) and materials (metal, dielectric covered metal, polystyrene) has been investigated. Plasma ignition causes fluid-dynamic instabilities moving in the direction of the jet flow and correlated with the high-voltage pulses: for low pulse repetition frequency (PRF) (<125 Hz), the movement of the turbulent front between two voltage pulses can be tracked, whereas for higher PRF (1,000 Hz) the flow is completely characterized by turbulent eddies in the effluent region, without relevant changes between subsequent voltage pulses. When the jet is impinging on a substrate, turbulent fronts propagate over the surface starting from the gas impinging zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ito Y, Urabe K, Takano N, Tachibana K (2008) Appl Phys Express 1:067009

    Article  Google Scholar 

  2. Olabanji OT, Bradley JW (2012) Plasma Process Polym 9:929–936

    Article  CAS  Google Scholar 

  3. Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G (2011) J Phys D Appl Phys 44:105204

    Article  Google Scholar 

  4. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5:503–533

    Article  CAS  Google Scholar 

  5. Colombo V, Fabiani D, Focarete ML, Ghedini E, Gherardi M, Gualandi C, Laurita R, Sanibondi P, Zaccaria M (2013). In: Proceedings of the 11th IEEE international conference on solid dielectrics—ICSD 11, Bologna, Italy, June 30–July 4, 2013

  6. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Contrib Plasma Phys 49:631–640

    Article  Google Scholar 

  7. O’Neill FT, Twomey B, Law VJ, Milosavljevic V, Kong M, Anghel SD, Dowling D (2012) IEEE Trans Plasma Sci 40:2994–3002

    Article  Google Scholar 

  8. Deng XL, Nikiforov AY, Vanraes P, Leys C (2013) J Appl Phys 113:023305

    Article  Google Scholar 

  9. Xiong Q, Nikiforov AY, Li L, Vanraes P, Britun N, Snyders R, Lu XP, Leys C (2012) Eur Phys J D 66:281

    Article  Google Scholar 

  10. Hong Y, Lu N, Pan J, Li J, Wu Y, Shang KF (2013) J Electrost 71:93–101

    Article  CAS  Google Scholar 

  11. van Gessel AFH, Hrycak B, Jasinski M, Mizeraczyk J, van der Mullen JJAM, Bruggeman PJ (2013) J Phys D Appl Phys 46:095201

    Article  Google Scholar 

  12. Xiong Q, Nikiforov AY, Gonzalez MA, Leys C, Lu XP (2013) Plasma Sources Sci Technol 22:015011

    Article  Google Scholar 

  13. Boselli M, Colombo V, Ghedini E, Gherardi M, Laurita R, Liguori A, Marani F, Sanibondi P, Stancampiano A (2013). In: Proceedings of 21st international symposium on plasma chemistry—ISPC21, Cairns, Australia, 4–9 August 2013

  14. Shao T, Long K, Zhang C, Yan P, Zhang S (2008) J Phys D Appl Phys 41:215203

    Article  Google Scholar 

  15. Ayan H, Fridman G, Gutsol AF, Vasilets VN, Fridman A, Friedman G (2008) IEEE Trans Plasma Sci 36:504–508

    Article  CAS  Google Scholar 

  16. Oh JS, Olabanji OT, Hale C, Mariani R, Kontis K, Bradley JW (2011) J Phys D Appl Phys 44:155206

    Article  Google Scholar 

  17. Lu X, Laroussi M, Puech V (2012) Plasma Sources Sci Technol 21:034005

    Article  Google Scholar 

  18. Colombo V, Fabiani D, Focarete ML, Gherardi M, Gualandi C, Laurita R, Zaccaria M (2014) Plasma Process Polym. doi:10.1002/ppap.201300141

    Google Scholar 

  19. Ungate CD, Harleman DR, Jirka GH (1975) Stability and mixing of submerged turbulent jets at low Reynolds numbers, MIT Energy Lab

  20. Folletto M, Douat C, Fontane J, Joly L, Pitchford L, Puech V (2013). In: Proceedings of 31th international conference on phenomena in ionized gases—ICPIG, Granada, Spain, 14–19 July 2013

  21. Ghasemi M, Olszewski P, Bradley JW, Walsh JL (2013) J Phys D Appl Phys 46:052001

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by FP7 COST Action MP1101 “Biomedical Applications of Atmospheric Pressure Plasma Technology” and FP7 COST Action TD1208 “Electrical discharges with liquids for future applications”. The contribution of Silvano Dallavalle for the design of the plasma source is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Colombo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1164 kb)

Supplementary material 2 (MPG 1552 kb)

Supplementary material 3 (MPG 1402 kb)

Supplementary material 4 (MPG 568 kb)

Supplementary material 5 (MPG 1324 kb)

Supplementary material 6 (MPG 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boselli, M., Colombo, V., Ghedini, E. et al. Schlieren High-Speed Imaging of a Nanosecond Pulsed Atmospheric Pressure Non-equilibrium Plasma Jet. Plasma Chem Plasma Process 34, 853–869 (2014). https://doi.org/10.1007/s11090-014-9537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9537-1

Keywords

Navigation